Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers develop new theoretical framework for future studies of resilience

27.01.2015

New approach focuses on the appraisal of stressful or threatening situations by the brain

Researchers at the Research Center Translational Neurosciences of Johannes Gutenberg University Mainz (JGU) in Germany have advanced a generalized concept as the basis for future studies of mental resilience.

Their new approach is based on a mechanistic theory which takes as its starting point the appraisals made by the brain in response to exposure to stressful or threatening situations. Previously social, psychological, and genetic factors were in the foreground of resilience research. The Mainz-based team has published its conclusions in the renowned journal Behavioral and Brain Sciences.

Stress, traumatic events, and difficult life situations play a significant role in the development of many mental illnesses, such as depression, anxiety, addiction. However, not everyone exposed to such circumstances develops a psychological disorder as a result. Every person has a greater or lesser mental stabilizing capacity and this inherent potential is called 'resilience' by psychologists.

Resilience helps to effectively master challenges, stress, and difficult situations, thus maintaining mental health. The fact that some individuals either develop only short -term problems or do not become ill at all on experiencing major psychological or physical pressures suggests that there are certain protective mechanisms – in other words, defensive, self-healing processes – which can prevent the development of stress-related illnesses.

The core concern of the Mainz team of researchers is to identify these mechanisms. By means of a thorough review and analysis of the results of previous studies of and investigations into the subject of resilience, they were able to identify a common principle that can be used as a general basis for future studies of resilience. In order to achieve this, the researchers combined various parameters and research concepts – from psychological and social approaches to the results of genetic and even neurobiological investigations.

"To date, research into resilience has tended to take into account a very extensive range of social, psychological, and even genetic factors that positively influence mental flexibility, such as social support, certain personality traits, and typical behavior patterns," explained Professor Raffael Kalisch, one of the authors of the current publication and the director of the Neuroimaging Center, a central research platform of the Mainz University Medical Center and the Research Center on Translational Neurosciences. "We wondered whether there might be a common denominator behind all of these individual approaches and so we systematically examined various examples.

As a result, in our new hypothesis we focus less on the already well-known social, psychological, or genetic factors and much more on cognitive processes happening in the brain. We thus consider that the appropriate way forward is to determine how the brain assesses each situation or stimulus. It is quite possibly the positive evaluation of potentially aversive stimuli that is the central mechanism which ultimately determines an individual's level of resilience. The many already identified factors only impact on resilience indirectly by influencing the way the brain assesses a certain situation."

Assuming this theory is correct and it is the mental processes of evaluation that are of central relevance, this would mean that it is not necessarily the threatening situations or stimuli that decide whether stress develops but rather the manner in which the individual appraises the situation. A person who tends to more positively evaluate such factors would be protected against stress-related illnesses over the long term because the frequency and degree of stress reactions in that person would be reduced. The Mainz-based researchers call their new mechanistic hypothesis 'Positive Appraisal Style Theory of Resilience' (PASTOR).

The aim of future research activities will thus be to investigate the neurobiological processes that occur in the brain and that lead it to see a specific situation or potential threat in a more positive light. "We want to understand which mental processes enable people to protect themselves against the harmful effects of stress and unpleasant events, and how these protective mechanisms can be specifically promoted and reinforced," added Kalisch.

One example of an actual research project inspired by the PASTOR theory is the recently initiated Mainz Resilience Project (MARP). Being recruited for the study are young, healthy participants who are in the specific and frequently difficult phase of life that involves the transition from adolescence and school and family life to adulthood and work life. The researchers will be monitoring the study subjects over a period of several years in order to document their mental health and the stress factors to which they are exposed over time.

The researchers hope that this will enable them to identify key protective mechanisms in the brain as well as the mental characteristics that contribute to psychological resilience. The long-term goal is the development of effective preventative measures that would not only alleviate the distress suffered by individuals but also reduce the related financial and social outlay.

Mainz represents an ideal environment for investigations in this field. The German Resilience Center Mainz (“Deutsches Resilienz-Zentrum Mainz” (DRZ)), in which neuroscientists, physicians, psychologists, and social scientists combine forces, has been recently established in order to specifically investigate the phenomenon of resilience. With its three core objectives "Understand, Prevent, Change," the DRZ will be taking an innovative approach to dealing with a subject that is of global relevance. It closes an important gap in the German research landscape and is the first center of its kind in Europe.

Weitere Informationen:

http://www.blogs.uni-mainz.de/fb04grc/ - German Resilience Center (DRZ) ;
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-... - Mainz Resilience Project (MARP)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>