Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers develop new theoretical framework for future studies of resilience

27.01.2015

New approach focuses on the appraisal of stressful or threatening situations by the brain

Researchers at the Research Center Translational Neurosciences of Johannes Gutenberg University Mainz (JGU) in Germany have advanced a generalized concept as the basis for future studies of mental resilience.

Their new approach is based on a mechanistic theory which takes as its starting point the appraisals made by the brain in response to exposure to stressful or threatening situations. Previously social, psychological, and genetic factors were in the foreground of resilience research. The Mainz-based team has published its conclusions in the renowned journal Behavioral and Brain Sciences.

Stress, traumatic events, and difficult life situations play a significant role in the development of many mental illnesses, such as depression, anxiety, addiction. However, not everyone exposed to such circumstances develops a psychological disorder as a result. Every person has a greater or lesser mental stabilizing capacity and this inherent potential is called 'resilience' by psychologists.

Resilience helps to effectively master challenges, stress, and difficult situations, thus maintaining mental health. The fact that some individuals either develop only short -term problems or do not become ill at all on experiencing major psychological or physical pressures suggests that there are certain protective mechanisms – in other words, defensive, self-healing processes – which can prevent the development of stress-related illnesses.

The core concern of the Mainz team of researchers is to identify these mechanisms. By means of a thorough review and analysis of the results of previous studies of and investigations into the subject of resilience, they were able to identify a common principle that can be used as a general basis for future studies of resilience. In order to achieve this, the researchers combined various parameters and research concepts – from psychological and social approaches to the results of genetic and even neurobiological investigations.

"To date, research into resilience has tended to take into account a very extensive range of social, psychological, and even genetic factors that positively influence mental flexibility, such as social support, certain personality traits, and typical behavior patterns," explained Professor Raffael Kalisch, one of the authors of the current publication and the director of the Neuroimaging Center, a central research platform of the Mainz University Medical Center and the Research Center on Translational Neurosciences. "We wondered whether there might be a common denominator behind all of these individual approaches and so we systematically examined various examples.

As a result, in our new hypothesis we focus less on the already well-known social, psychological, or genetic factors and much more on cognitive processes happening in the brain. We thus consider that the appropriate way forward is to determine how the brain assesses each situation or stimulus. It is quite possibly the positive evaluation of potentially aversive stimuli that is the central mechanism which ultimately determines an individual's level of resilience. The many already identified factors only impact on resilience indirectly by influencing the way the brain assesses a certain situation."

Assuming this theory is correct and it is the mental processes of evaluation that are of central relevance, this would mean that it is not necessarily the threatening situations or stimuli that decide whether stress develops but rather the manner in which the individual appraises the situation. A person who tends to more positively evaluate such factors would be protected against stress-related illnesses over the long term because the frequency and degree of stress reactions in that person would be reduced. The Mainz-based researchers call their new mechanistic hypothesis 'Positive Appraisal Style Theory of Resilience' (PASTOR).

The aim of future research activities will thus be to investigate the neurobiological processes that occur in the brain and that lead it to see a specific situation or potential threat in a more positive light. "We want to understand which mental processes enable people to protect themselves against the harmful effects of stress and unpleasant events, and how these protective mechanisms can be specifically promoted and reinforced," added Kalisch.

One example of an actual research project inspired by the PASTOR theory is the recently initiated Mainz Resilience Project (MARP). Being recruited for the study are young, healthy participants who are in the specific and frequently difficult phase of life that involves the transition from adolescence and school and family life to adulthood and work life. The researchers will be monitoring the study subjects over a period of several years in order to document their mental health and the stress factors to which they are exposed over time.

The researchers hope that this will enable them to identify key protective mechanisms in the brain as well as the mental characteristics that contribute to psychological resilience. The long-term goal is the development of effective preventative measures that would not only alleviate the distress suffered by individuals but also reduce the related financial and social outlay.

Mainz represents an ideal environment for investigations in this field. The German Resilience Center Mainz (“Deutsches Resilienz-Zentrum Mainz” (DRZ)), in which neuroscientists, physicians, psychologists, and social scientists combine forces, has been recently established in order to specifically investigate the phenomenon of resilience. With its three core objectives "Understand, Prevent, Change," the DRZ will be taking an innovative approach to dealing with a subject that is of global relevance. It closes an important gap in the German research landscape and is the first center of its kind in Europe.

Weitere Informationen:

http://www.blogs.uni-mainz.de/fb04grc/ - German Resilience Center (DRZ) ;
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-... - Mainz Resilience Project (MARP)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>