Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linköping University invention simplifies home diagnostics

24.03.2011
Advances in medical diagnostic technology will likely allow individuals to perform preliminary medical diagnoses themselves, in their own home, in the future.

“The idea is to make complex diagnostic processes as simple to perform as modern-day pregnancy tests,” says Nathaniel Robinson, who leads the Transport and Separations Group at Linköping University in Sweden. Dr. Robinson and PhD student Per Erlandsson have invented an improved pump, called an electroosmotic pump, which can be placed in a “microfluidic chip”.

Such chips, sometimes called “lab-on-a-chip” devices, contain miniaturized versions of the beakers and test tubes found in chemistry laboratories interconnected by tiny pipes. Rather than using moving parts, the new pump moves fluids in these pipes via an electric current. The fluids to be pumped can be biological samples such as blood, urine or saliva for medical devices.

“The trick is to generate the ionic current that moves the fluid to be pumped without disturbing the cells, proteins, and other molecules in the sample,” according to Dr. Robinson.

To do this, the researchers have employed a type of electronically conducting plastic in the pump’s electrodes. The plastic can be electrochemically oxidized or reduced, acting as a transducer between the ions, the charge carriers in fluids, and electrons, which carry charge in metal wires. Traditional electroosmotic pumps use metal electrodes and the electrochemical reactions required are performed on the water in the sample itself.

By-products of this electrochemistry included oxygen and hydrogen gas bubbles, and the production of acid or base. Each of these by-products disturbs the microfluidic device and the fluid sample.

“This is primarily why electroosmotic pumps have not been more widely used in the development of medical devices,” says Robinson.

The researchers have shown that the pump can be operated repeatedly for extended periods of time, and can operate at relatively low voltages, so that small, portable diagnostic devices can be driven by batteries.

“Several microfluidics articles describe ways to work around the complications associated with integrated metal-electrodes. Here, the alternative reactions of electrochemically active electrodes give us the chance to remove the core problem, the electrolysis of solvent,” according to Per Erlandsson, who constructed the pumps.

The researchers have applied for a patent for the new invention and are currently looking for partners who have a need for such pumps in their lab-on-a-chip devices. The research is also described in an article appearing in the latest issue of the scientific journal Electrophoresis.

Simple-to-operate medical devices, that will ultimately enable preliminary self-diagnosis via automated testing kits, will likely become an important part of our healthcare system. Otherwise, we will have a difficult time financing healthcare for an aging population at current or expanded levels of service. For example, by automating and simplifying screening for diseases, such as cancer, a greater portion of the population can be screened, more cases will be caught early, and hospital resources can focus on treatment of individuals who are truly ill. This pump is a significant step towards realizing the devices that will make this possible.

More information: Kontakt:
Dr Nathaniel Robinson, +46-11 363479, nathaniel.d.robinson@liu.se
Pressofficer: Anika Agebjörn; anika.agebjorn@liu.se; +46-709 791 334

Anika Agebjörn | idw
Further information:
http://www.vr.se
http://onlinelibrary.wiley.com/doi/10.1002/elps.201000617/full

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>