Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Linköping University invention simplifies home diagnostics

Advances in medical diagnostic technology will likely allow individuals to perform preliminary medical diagnoses themselves, in their own home, in the future.

“The idea is to make complex diagnostic processes as simple to perform as modern-day pregnancy tests,” says Nathaniel Robinson, who leads the Transport and Separations Group at Linköping University in Sweden. Dr. Robinson and PhD student Per Erlandsson have invented an improved pump, called an electroosmotic pump, which can be placed in a “microfluidic chip”.

Such chips, sometimes called “lab-on-a-chip” devices, contain miniaturized versions of the beakers and test tubes found in chemistry laboratories interconnected by tiny pipes. Rather than using moving parts, the new pump moves fluids in these pipes via an electric current. The fluids to be pumped can be biological samples such as blood, urine or saliva for medical devices.

“The trick is to generate the ionic current that moves the fluid to be pumped without disturbing the cells, proteins, and other molecules in the sample,” according to Dr. Robinson.

To do this, the researchers have employed a type of electronically conducting plastic in the pump’s electrodes. The plastic can be electrochemically oxidized or reduced, acting as a transducer between the ions, the charge carriers in fluids, and electrons, which carry charge in metal wires. Traditional electroosmotic pumps use metal electrodes and the electrochemical reactions required are performed on the water in the sample itself.

By-products of this electrochemistry included oxygen and hydrogen gas bubbles, and the production of acid or base. Each of these by-products disturbs the microfluidic device and the fluid sample.

“This is primarily why electroosmotic pumps have not been more widely used in the development of medical devices,” says Robinson.

The researchers have shown that the pump can be operated repeatedly for extended periods of time, and can operate at relatively low voltages, so that small, portable diagnostic devices can be driven by batteries.

“Several microfluidics articles describe ways to work around the complications associated with integrated metal-electrodes. Here, the alternative reactions of electrochemically active electrodes give us the chance to remove the core problem, the electrolysis of solvent,” according to Per Erlandsson, who constructed the pumps.

The researchers have applied for a patent for the new invention and are currently looking for partners who have a need for such pumps in their lab-on-a-chip devices. The research is also described in an article appearing in the latest issue of the scientific journal Electrophoresis.

Simple-to-operate medical devices, that will ultimately enable preliminary self-diagnosis via automated testing kits, will likely become an important part of our healthcare system. Otherwise, we will have a difficult time financing healthcare for an aging population at current or expanded levels of service. For example, by automating and simplifying screening for diseases, such as cancer, a greater portion of the population can be screened, more cases will be caught early, and hospital resources can focus on treatment of individuals who are truly ill. This pump is a significant step towards realizing the devices that will make this possible.

More information: Kontakt:
Dr Nathaniel Robinson, +46-11 363479,
Pressofficer: Anika Agebjörn;; +46-709 791 334

Anika Agebjörn | idw
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>