Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lactic acid found to fuel tumors

A team of researchers at Duke University Medical Center and the Université catholique de Louvain (UCL) has found that lactic acid is an important energy source for tumor cells. In further experiments, they discovered a new way to destroy the most hard-to-kill, dangerous tumor cells by preventing them from delivering lactic acid.

"We have known for more than 50 years that low-oxygen, or hypoxic, cells cause resistance to radiation therapy," said senior co-author Mark Dewhirst, DVM, Ph.D., professor of radiation oncology and pathology at Duke. "Over the past 10 years, scientists have found that hypoxic cells are also more aggressive and hard to treat with chemotherapy. The work we have done presents an entirely new way for us to go after them."

Many tumors have cells that burn fuel for activities in different ways. Tumor cells near blood vessels have adequate oxygen sources and can either burn glucose like normal cells, or lactic acid (lactate). Tumor cells further from vessels are hypoxic and inefficiently burn a lot of glucose to keep going. In turn, they produce lactate as a waste product.

Tumor cells with good oxygen supply actually prefer to burn lactate, which frees up glucose to be used by the less-oxygenated cells. But when the researchers cut off the cells' ability to use lactate, the hypoxic cells didn't get as much glucose.

For the dangerous hypoxic cells, "it is glucose or death," said Pierre Sonveaux, professor in the UCL Unit of Pharmacology & Therapeutics and lead author of the study, published in the Nov. 20 online edition of the Journal of Clinical Investigation. He formerly worked with Dr. Dewhirst at Duke.

The next challenge was to discover how lactate moved into tumor cells. Because lactate recycling exists in exercising muscle to prevent cramps, the researchers imagined that the same molecular machinery could be used by tumor cells.

"We discovered that a transporter protein of muscle origin, MCT1, was also present in respiring tumor cells," said Dewhirst. The team used chemical inhibitors of MCT1 and cell models in which MCT1 had been deleted to learn its role in delivering lactate.

"We not only proved that MCT1 was important, we formally demonstrated that MCT1 was unique for mediating lactate uptake," said Professor Olivier Feron of the UCL Unit of Pharmacology & Therapeutics.

Blocking MCT1 did not kill the oxygenated cells, but it nudged their metabolism toward inefficiently burning glucose. Because the glucose was used more abundantly by the better-oxygenated cells, they used up most of the glucose before it could reach the hypoxic cells, which starved while waiting in vain for glucose to arrive.

"This finding is really exciting," Dewhirst said. "The idea of starving hypoxic cells to death is completely novel."

Even though hypoxic tumor cells have been identified as a cause of treatment resistance for decades, there has not been a reliable method to kill them. "They are the population of cells that can cause tumor relapse," said Professor Feron.

A significant advantage of the new strategy is that a new drug does not need to reach hypoxic cells far from blood vessels and it does not need to enter into cells at all – it merely needs to block the transporter molecule that moves the lactose, which is outside of the cells. "This finding will be really important for drug development," said Sonveaux.

The researchers also showed in mice that radiation therapy along with MCT1 inhibition was effective for killing the remaining tumor cells, those nearest the blood vessels. This proved to be a substantial antitumor approach.

Mary Jane Gore | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>