Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lactic acid found to fuel tumors

24.11.2008
A team of researchers at Duke University Medical Center and the Université catholique de Louvain (UCL) has found that lactic acid is an important energy source for tumor cells. In further experiments, they discovered a new way to destroy the most hard-to-kill, dangerous tumor cells by preventing them from delivering lactic acid.

"We have known for more than 50 years that low-oxygen, or hypoxic, cells cause resistance to radiation therapy," said senior co-author Mark Dewhirst, DVM, Ph.D., professor of radiation oncology and pathology at Duke. "Over the past 10 years, scientists have found that hypoxic cells are also more aggressive and hard to treat with chemotherapy. The work we have done presents an entirely new way for us to go after them."

Many tumors have cells that burn fuel for activities in different ways. Tumor cells near blood vessels have adequate oxygen sources and can either burn glucose like normal cells, or lactic acid (lactate). Tumor cells further from vessels are hypoxic and inefficiently burn a lot of glucose to keep going. In turn, they produce lactate as a waste product.

Tumor cells with good oxygen supply actually prefer to burn lactate, which frees up glucose to be used by the less-oxygenated cells. But when the researchers cut off the cells' ability to use lactate, the hypoxic cells didn't get as much glucose.

For the dangerous hypoxic cells, "it is glucose or death," said Pierre Sonveaux, professor in the UCL Unit of Pharmacology & Therapeutics and lead author of the study, published in the Nov. 20 online edition of the Journal of Clinical Investigation. He formerly worked with Dr. Dewhirst at Duke.

The next challenge was to discover how lactate moved into tumor cells. Because lactate recycling exists in exercising muscle to prevent cramps, the researchers imagined that the same molecular machinery could be used by tumor cells.

"We discovered that a transporter protein of muscle origin, MCT1, was also present in respiring tumor cells," said Dewhirst. The team used chemical inhibitors of MCT1 and cell models in which MCT1 had been deleted to learn its role in delivering lactate.

"We not only proved that MCT1 was important, we formally demonstrated that MCT1 was unique for mediating lactate uptake," said Professor Olivier Feron of the UCL Unit of Pharmacology & Therapeutics.

Blocking MCT1 did not kill the oxygenated cells, but it nudged their metabolism toward inefficiently burning glucose. Because the glucose was used more abundantly by the better-oxygenated cells, they used up most of the glucose before it could reach the hypoxic cells, which starved while waiting in vain for glucose to arrive.

"This finding is really exciting," Dewhirst said. "The idea of starving hypoxic cells to death is completely novel."

Even though hypoxic tumor cells have been identified as a cause of treatment resistance for decades, there has not been a reliable method to kill them. "They are the population of cells that can cause tumor relapse," said Professor Feron.

A significant advantage of the new strategy is that a new drug does not need to reach hypoxic cells far from blood vessels and it does not need to enter into cells at all – it merely needs to block the transporter molecule that moves the lactose, which is outside of the cells. "This finding will be really important for drug development," said Sonveaux.

The researchers also showed in mice that radiation therapy along with MCT1 inhibition was effective for killing the remaining tumor cells, those nearest the blood vessels. This proved to be a substantial antitumor approach.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>