Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of key enzyme in the metabolism of folic acid leads to birth defects

18.01.2013
Researchers at The University of Texas at Austin have discovered that the lack of a critical enzyme in the folic acid metabolic pathway leads to neural tube birth defects in developing embryos.

It has been known for several decades that folic acid supplementation dramatically reduces the incidence of neural tube defects, such as spina bifida and anencephaly, which are among the most common birth defects. In some populations, folic acid supplementation has decreased neural tube defects by as much as 70 percent.

However, scientists still do not fully understand how folic acid decreases neural tube defects, or why folic acid supplementation does not eliminate birth defects in all pregnancies.

"Now, we've found that mutation of a key folic acid enzyme causes neural tube defects in mice," said Dean Appling, professor of biochemistry in the College of Natural Sciences. "This is the clearest mechanistic link yet between folic acid and birth defects."

Appling and his colleagues published their research in the Jan. 8 issue of Proceedings of the National Academy of Sciences (PNAS).

The scientists made the discovery using mice that lack a gene for a folic acid enzyme called Mthfd1l, which is required for cells to produce a metabolite called formate. Embryos need formate to develop normally.

"This work reveals that one of the ways that folic acid prevents birth defects is by ensuring the production of formate in the developing embryo," said Appling, "and it may explain those 30 percent of neural tube defects that cannot be prevented by folic acid supplementation."

Appling said that the mice provide researchers with a strong model system that they can use to further understand folic acid and its role in birth defects in humans. In fact, humans share the same gene for the folic acid enzyme with the mouse and all other mammals. Indeed, it has recently been discovered that point mutations in that human gene increase the risk of birth defects.

Appling said that he and his colleagues would like to use the mouse system to begin looking for nutrients that could be delivered to pregnant mothers to prevent those neural tube defects that cannot be prevented by folic acid.

Ultimately, women could someday be screened for the gene that produces the enzyme. If they are deficient, steps could be taken to improve their chances for developing embryos free of neural tube defects through further nutrient supplementation.

Folic acid was discovered at The University of Texas at Austin in the 1940s by biochemists Esmond Snell and Herschel Mitchell. The U.S. has fortified all enriched cereal grain products with folic acid since 1996 to ensure that women of childbearing age receive adequate quantities of the vitamin.

Postdoctoral researcher Jessica Momb and graduate student Jordan Lewandowski were largely responsible for this research. Co-authors include graduate student Joshua Bryant, researcher Rebecca Fitch, researcher Deborah Surman, and Steven Vokes, assistant professor of biology.

Additional contact:
Lee Clippard, media relations
512-232-0675
clippard@austin.utexas.edu

Dean Appling, professor | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>