Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of key enzyme in the metabolism of folic acid leads to birth defects

18.01.2013
Researchers at The University of Texas at Austin have discovered that the lack of a critical enzyme in the folic acid metabolic pathway leads to neural tube birth defects in developing embryos.

It has been known for several decades that folic acid supplementation dramatically reduces the incidence of neural tube defects, such as spina bifida and anencephaly, which are among the most common birth defects. In some populations, folic acid supplementation has decreased neural tube defects by as much as 70 percent.

However, scientists still do not fully understand how folic acid decreases neural tube defects, or why folic acid supplementation does not eliminate birth defects in all pregnancies.

"Now, we've found that mutation of a key folic acid enzyme causes neural tube defects in mice," said Dean Appling, professor of biochemistry in the College of Natural Sciences. "This is the clearest mechanistic link yet between folic acid and birth defects."

Appling and his colleagues published their research in the Jan. 8 issue of Proceedings of the National Academy of Sciences (PNAS).

The scientists made the discovery using mice that lack a gene for a folic acid enzyme called Mthfd1l, which is required for cells to produce a metabolite called formate. Embryos need formate to develop normally.

"This work reveals that one of the ways that folic acid prevents birth defects is by ensuring the production of formate in the developing embryo," said Appling, "and it may explain those 30 percent of neural tube defects that cannot be prevented by folic acid supplementation."

Appling said that the mice provide researchers with a strong model system that they can use to further understand folic acid and its role in birth defects in humans. In fact, humans share the same gene for the folic acid enzyme with the mouse and all other mammals. Indeed, it has recently been discovered that point mutations in that human gene increase the risk of birth defects.

Appling said that he and his colleagues would like to use the mouse system to begin looking for nutrients that could be delivered to pregnant mothers to prevent those neural tube defects that cannot be prevented by folic acid.

Ultimately, women could someday be screened for the gene that produces the enzyme. If they are deficient, steps could be taken to improve their chances for developing embryos free of neural tube defects through further nutrient supplementation.

Folic acid was discovered at The University of Texas at Austin in the 1940s by biochemists Esmond Snell and Herschel Mitchell. The U.S. has fortified all enriched cereal grain products with folic acid since 1996 to ensure that women of childbearing age receive adequate quantities of the vitamin.

Postdoctoral researcher Jessica Momb and graduate student Jordan Lewandowski were largely responsible for this research. Co-authors include graduate student Joshua Bryant, researcher Rebecca Fitch, researcher Deborah Surman, and Steven Vokes, assistant professor of biology.

Additional contact:
Lee Clippard, media relations
512-232-0675
clippard@austin.utexas.edu

Dean Appling, professor | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>