Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin study finds excess insulin levels an unlikely cause of atherosclerosis

28.03.2012
A number of studies have shown that excess insulin circulating in the bloodstream is a major independent risk factor for cardiovascular disease. However, a new study from Joslin Diabetes Center finds that this condition, called hyperinsulinemia, is itself not a cause of atherosclerosis.

In humans, insulin resistance, a condition in which insulin becomes less effective at lowering blood sugar levels, coexists with hyperinsulinemia. Both are associated with atherosclerosis, the buildup of cholesterol in blood vessels that causes coronary artery disease, heart attack, and stroke.

In this condition, vascular cells could become dysfunctional because of hyperinsulinemia or because vascular cells themselves are insulin resistant, which is caused by increased insulin production from pancreatic beta cells as a compensatory mechanism to overcome insulin resistance.

Scientists have known for some time that insulin resistance and hyperinsulinemia cause increased lipids in the circulation, which indirectly leads to atherosclerosis. However, the Joslin study, published in the May issue of the journal Arteriosclerosis, Thrombosis, and Vascular Biology, shows that, without other factors such as high blood pressure and high cholesterol, hyperinsulinemia alone does not cause atherosclerosis.

"For years, scientists have suspected that high levels of insulin could affect vascular cells negatively," says lead author Christian Rask-Madsen, MD, PhD, a research associate at Joslin's Dianne Nunnally Hoppes Laboratory for Diabetes Complications. "We know that people with type 2 diabetes and insulin resistance are susceptible to atherosclerosis, but our study shows that excess insulin alone does not promote this complication."

To study the effects of hyperinsulinemia on atherosclerosis, Rask-Madsen and his colleagues created mice with fewer insulin receptors in every tissue of the body and compared them to mice with intact insulin receptors. Insulin receptors make cells responsive to insulin, a hormone that circulates in the bloodstream. Both sets of mice were genetically modified to have high cholesterol, but were similar in terms of body weight, glucose metabolism, and lipid and blood pressure levels.

Reducing the insulin receptors from one set of mice did not significantly impair their glucose metabolism, says Rask-Madsen—certainly not enough to make the animals overtly insulin resistant—but it did increase the amount of circulating insulin by reducing its removal from the blood. This model allowed the researchers to study the effects of hyperinsulinemia without the confounding effects of insulin resistance.

The new findings build on a 2010 study conducted by Rask-Madsen, which found that insulin resistance only in endothelial cells is sufficient to increase susceptibility to atherosclerosis. George King, MD, Joslin's chief scientific officer, is the senior author of both studies.

Taken together, Rask-Madsen says, the findings of the two studies suggest that "when we look at new ways to prevent atherosclerosis, we should focus on improving insulin signaling in vascular cells rather than blocking the action of insulin in these cells."

Contributors to the paper include Joslin's Erica Buonomo, Qian Li, Kyoungmin Park, Allen Clermont and Oluwatobi Yerokun, and Mark Rekhter of Lilly Research Laboratories. Funding came from the National Institutes of Health.

About Joslin Diabetes Center

Joslin Diabetes Center, located in Boston, Massachusetts, is the world's largest diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications.

Keep up with Joslin research and clinical news at Inside Joslin at http://www.joslin.org/news/inside_joslin.html,

Become a fan of Joslin on Facebook at http://www.facebook.com/joslindiabetes

Follow Joslin on Twitter @JoslinDiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>