Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin study finds excess insulin levels an unlikely cause of atherosclerosis

28.03.2012
A number of studies have shown that excess insulin circulating in the bloodstream is a major independent risk factor for cardiovascular disease. However, a new study from Joslin Diabetes Center finds that this condition, called hyperinsulinemia, is itself not a cause of atherosclerosis.

In humans, insulin resistance, a condition in which insulin becomes less effective at lowering blood sugar levels, coexists with hyperinsulinemia. Both are associated with atherosclerosis, the buildup of cholesterol in blood vessels that causes coronary artery disease, heart attack, and stroke.

In this condition, vascular cells could become dysfunctional because of hyperinsulinemia or because vascular cells themselves are insulin resistant, which is caused by increased insulin production from pancreatic beta cells as a compensatory mechanism to overcome insulin resistance.

Scientists have known for some time that insulin resistance and hyperinsulinemia cause increased lipids in the circulation, which indirectly leads to atherosclerosis. However, the Joslin study, published in the May issue of the journal Arteriosclerosis, Thrombosis, and Vascular Biology, shows that, without other factors such as high blood pressure and high cholesterol, hyperinsulinemia alone does not cause atherosclerosis.

"For years, scientists have suspected that high levels of insulin could affect vascular cells negatively," says lead author Christian Rask-Madsen, MD, PhD, a research associate at Joslin's Dianne Nunnally Hoppes Laboratory for Diabetes Complications. "We know that people with type 2 diabetes and insulin resistance are susceptible to atherosclerosis, but our study shows that excess insulin alone does not promote this complication."

To study the effects of hyperinsulinemia on atherosclerosis, Rask-Madsen and his colleagues created mice with fewer insulin receptors in every tissue of the body and compared them to mice with intact insulin receptors. Insulin receptors make cells responsive to insulin, a hormone that circulates in the bloodstream. Both sets of mice were genetically modified to have high cholesterol, but were similar in terms of body weight, glucose metabolism, and lipid and blood pressure levels.

Reducing the insulin receptors from one set of mice did not significantly impair their glucose metabolism, says Rask-Madsen—certainly not enough to make the animals overtly insulin resistant—but it did increase the amount of circulating insulin by reducing its removal from the blood. This model allowed the researchers to study the effects of hyperinsulinemia without the confounding effects of insulin resistance.

The new findings build on a 2010 study conducted by Rask-Madsen, which found that insulin resistance only in endothelial cells is sufficient to increase susceptibility to atherosclerosis. George King, MD, Joslin's chief scientific officer, is the senior author of both studies.

Taken together, Rask-Madsen says, the findings of the two studies suggest that "when we look at new ways to prevent atherosclerosis, we should focus on improving insulin signaling in vascular cells rather than blocking the action of insulin in these cells."

Contributors to the paper include Joslin's Erica Buonomo, Qian Li, Kyoungmin Park, Allen Clermont and Oluwatobi Yerokun, and Mark Rekhter of Lilly Research Laboratories. Funding came from the National Institutes of Health.

About Joslin Diabetes Center

Joslin Diabetes Center, located in Boston, Massachusetts, is the world's largest diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications.

Keep up with Joslin research and clinical news at Inside Joslin at http://www.joslin.org/news/inside_joslin.html,

Become a fan of Joslin on Facebook at http://www.facebook.com/joslindiabetes

Follow Joslin on Twitter @JoslinDiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>