Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers identify a protein linked to the exacerbation of COPD

22.03.2013
Researchers from the RIKEN Advanced Science Institute and Nippon Medical School in Japan have identified a protein likely to be involved in the exacerbation of chronic obstructive pulmonary disease (COPD). This protein, Siglec-14, could serve as a potential new target for the treatment of COPD exacerbation.

In a study published today in the journal Cellular and Molecular Life Sciences the researchers show that COPD patients who do not express Siglec-14, a glycan-recognition protein, are less susceptible to exacerbation compared with those who do.

COPD is a chronic condition in which the airways and alveoli in the lungs become damaged, making it increasingly difficult for air to pass in and out. It is the 4th leading cause of death worldwide and its prevalence is on the rise. Exacerbation, or a sudden worsening of the COPD symptoms often triggered by bacterial or viral infection, directly leads to the decline of the quality of life, and even to the death, of the patient.

Based on the facts that Siglec-14, which is made by innate immune cells, binds to the bacteria that often trigger exacerbation, and that approximately 1 out of 4 people in Japan cannot make Siglec-14 because of genetic polymorphism, the research team led by Drs. Takashi Angata and Naoyuki Taniguchi (RIKEN Advanced Science Institute) and Drs. Takeo Ishii and Kozui Kida (Respiratory Care Clinic, Nippon Medical School) hypothesized that the presence of Siglec-14 may influence the frequency of exacerbation episodes in COPD patients.

The team analyzed the correlation between the genotype of SIGLEC14 gene and the frequency of COPD exacerbations during 1 year of monitoring in 135 COPD patients, and found that those patients who do not have Siglec-14 (31 patients) suffer far fewer episodes of exacerbations (nearly 80% less) on average compared with those who do (104 patients).

These findings by the team suggest that COPD patients may be stratified based on the SIGLEC14 genotype for more efficient and personalized care. They also imply that Siglec-14 protein is involved in the exacerbation of COPD, and that a compound that blocks the inflammatory events triggered by Siglec-14 engagement could be used to prevent or treat the exacerbation of COPD.

Reference

Takashi Angata, Takeo Ishii, Takashi Motegi, Ritsuko Oka, Rachel E. Taylor, Paula Campos Soto, Yung-Chi Chang, Ismael Secundino, Cong-Xiao Gao, Kazuaki Ohtsubo, Shinobu Kitazume, Victor Nizet, Ajit Varki, Akihiko Gemma, Kozui Kida, and Naoyuki Taniguchi. "Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation". Cellular and Molecular Life Sciences, 2013, doi: 10.1007/s00018-013-1311-7

About RIKEN

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Find us on Twitter at @riken_en

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>