Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers identify a protein linked to the exacerbation of COPD

22.03.2013
Researchers from the RIKEN Advanced Science Institute and Nippon Medical School in Japan have identified a protein likely to be involved in the exacerbation of chronic obstructive pulmonary disease (COPD). This protein, Siglec-14, could serve as a potential new target for the treatment of COPD exacerbation.

In a study published today in the journal Cellular and Molecular Life Sciences the researchers show that COPD patients who do not express Siglec-14, a glycan-recognition protein, are less susceptible to exacerbation compared with those who do.

COPD is a chronic condition in which the airways and alveoli in the lungs become damaged, making it increasingly difficult for air to pass in and out. It is the 4th leading cause of death worldwide and its prevalence is on the rise. Exacerbation, or a sudden worsening of the COPD symptoms often triggered by bacterial or viral infection, directly leads to the decline of the quality of life, and even to the death, of the patient.

Based on the facts that Siglec-14, which is made by innate immune cells, binds to the bacteria that often trigger exacerbation, and that approximately 1 out of 4 people in Japan cannot make Siglec-14 because of genetic polymorphism, the research team led by Drs. Takashi Angata and Naoyuki Taniguchi (RIKEN Advanced Science Institute) and Drs. Takeo Ishii and Kozui Kida (Respiratory Care Clinic, Nippon Medical School) hypothesized that the presence of Siglec-14 may influence the frequency of exacerbation episodes in COPD patients.

The team analyzed the correlation between the genotype of SIGLEC14 gene and the frequency of COPD exacerbations during 1 year of monitoring in 135 COPD patients, and found that those patients who do not have Siglec-14 (31 patients) suffer far fewer episodes of exacerbations (nearly 80% less) on average compared with those who do (104 patients).

These findings by the team suggest that COPD patients may be stratified based on the SIGLEC14 genotype for more efficient and personalized care. They also imply that Siglec-14 protein is involved in the exacerbation of COPD, and that a compound that blocks the inflammatory events triggered by Siglec-14 engagement could be used to prevent or treat the exacerbation of COPD.

Reference

Takashi Angata, Takeo Ishii, Takashi Motegi, Ritsuko Oka, Rachel E. Taylor, Paula Campos Soto, Yung-Chi Chang, Ismael Secundino, Cong-Xiao Gao, Kazuaki Ohtsubo, Shinobu Kitazume, Victor Nizet, Ajit Varki, Akihiko Gemma, Kozui Kida, and Naoyuki Taniguchi. "Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation". Cellular and Molecular Life Sciences, 2013, doi: 10.1007/s00018-013-1311-7

About RIKEN

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Find us on Twitter at @riken_en

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>