Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Iron in Coronary Artery Plaque is a Marker of Heart Attack Risk

The iron can be seen on micro-CT scan, holding promise for future imaging to find patients at risk

Plaque in a heart artery looks threatening, but cardiologists know that many of these buildups will not erupt, dislodge and block a vessel, causing a heart attack that can be fatal. Some will, however, and the challenge is to figure out atherosclerotic plaque that is dangerous and treat or remove it.

Now, researchers at Mayo Clinic have shown that iron, derived from blood, is much more prevalent in the kind of plaque that is unstable and is thus more likely to promote a myocardial infarction (MI) — heart attack — and possibly sudden death.

The team of researchers has demonstrated through a variety of experiments that iron buildup may be suitable as a marker of risk for a future MI, they reported today at the American Heart Association's Scientific Sessions 2010 in Chicago.

For example, they have found that Dual Energy Computed Tomography (DECT) and three-dimensional computerized tomography (CT) micro scans can detect excess iron in plaque, thus holding promise that in the future a scanning device might be able to noninvasively detect dangerous plaque formations in patients.

"We know that 70 percent of heart attacks are caused by unstable plaque, so what we really need for our patients is a way to identify the plaque that turns evil and puts them at jeopardy," says cardiologist Birgit Kantor, M.D., the study's lead researcher. "The scans we use now just show narrowing of heart arteries from plaque buildup but that doesn't tell us if the plaque inside those vessels walls is imminently dangerous."

"We think it is possible, based on these findings, to use iron as a natural marker for risk," she says. Dr. Kantor predicts that probably 5-10 years will pass before novel diagnostic scanners to identify these plaques become available in cardiology clinics.

Testing iron as a marker in human arteries
Excess iron in atherosclerotic plaque was noticed decades ago, but little research followed up on that observation, Dr. Kantor says. "The hypothesis then was that iron was the poison that created the plaque, but that was never proven and is in fact unlikely."

Cardiologists now know that plaque can be classified as stable or unstable. Mayo Clinic researchers believe that the amount of iron in the plaque can be seen as a "readout" of prior hemorrhagic, or bleeding, events that put a person at risk for plaque eruption.

In normal heart arteries, small blood vessels known as vasa vasorum bring nutrients to the vessel wall, and when plaque starts to build up inside the artery wall, some of these tiny vessels grow as well to feed them. These vessels can rupture, depositing iron, a component of blood, into the growing plaque. This unstable plaque, which has a large core of dead cells covered by a thin fibrous cap, can eventually rupture, forming a big blood clot that can shut down a heart artery.

"This kind of plaque can bleed and heal, bleed and heal, depositing iron into the buildup," Dr. Kantor says. "This plaque is at risk of breaking up and causing a heart attack."

To conduct this study, the researchers used samples from a unique Mayo Clinic biobank of heart arteries collected over time from autopsies of 400 patients who died from a suspected heart attack. Small sections (1–1.5 inches) from the three main coronary arteries of each patient have been preserved.

In this study, pathologists examined 97 artery samples and separated them into stable and unstable groups based on their appearance under a microscope (dead zones and fiber cap). They classified 31 plaques as stable, 24 as "vulnerable," and 22 as normal and then linked them to patient clinical records to see which patients died from a heart attack.

Then Yu Liu, M.D., Ph.D., the study's first author, applied a stain to the samples to detect iron content. She found iron content in the unstable plaque group was significantly higher than in the other groups.Iron was absent in normal arteries.

In a third step, the researchers scanned a subset of the artery segments using a benchtop micro-CT scanner, and created 3-D images to look for iron deposits in plaque. The CT could identify iron in plaque without the need for staining. "There was a high correlation between the vulnerability of the plaque and the quantity of iron in it," says Dr. Kantor.

Still, non-invasive imaging for plaque does not yet have the necessary resolution to differentiate high risk from low risk plaque in patients, she says, and so the research team is testing other imaging modalities such as photon counting that can overcome these barriers.

Other study authors are Nitin Garg, M.B.B.S.; Joseph Maleszewski, M.D.; Steven Jorgensen; Jia Wang, Ph.D.; Xinhui Duan, Ph.D.; Shuai Leng, Ph.D.; Kay Parker; Cynthia McCollough, Ph.D.; and Erik Ritman, M.D., Ph.D.; all of Mayo Clinic.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to For information about research and education, visit ( is available as a resource for your health stories.

Traci Klein | EurekAlert!
Further information:

Further reports about: 3-D image Artery Coronary Heart Iron Marker Plaque atherosclerotic plaque blood vessel dead zone heart arteries

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>