Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron in Coronary Artery Plaque is a Marker of Heart Attack Risk

16.11.2010
The iron can be seen on micro-CT scan, holding promise for future imaging to find patients at risk

Plaque in a heart artery looks threatening, but cardiologists know that many of these buildups will not erupt, dislodge and block a vessel, causing a heart attack that can be fatal. Some will, however, and the challenge is to figure out atherosclerotic plaque that is dangerous and treat or remove it.

Now, researchers at Mayo Clinic have shown that iron, derived from blood, is much more prevalent in the kind of plaque that is unstable and is thus more likely to promote a myocardial infarction (MI) — heart attack — and possibly sudden death.

The team of researchers has demonstrated through a variety of experiments that iron buildup may be suitable as a marker of risk for a future MI, they reported today at the American Heart Association's Scientific Sessions 2010 in Chicago.

For example, they have found that Dual Energy Computed Tomography (DECT) and three-dimensional computerized tomography (CT) micro scans can detect excess iron in plaque, thus holding promise that in the future a scanning device might be able to noninvasively detect dangerous plaque formations in patients.

"We know that 70 percent of heart attacks are caused by unstable plaque, so what we really need for our patients is a way to identify the plaque that turns evil and puts them at jeopardy," says cardiologist Birgit Kantor, M.D., the study's lead researcher. "The scans we use now just show narrowing of heart arteries from plaque buildup but that doesn't tell us if the plaque inside those vessels walls is imminently dangerous."

"We think it is possible, based on these findings, to use iron as a natural marker for risk," she says. Dr. Kantor predicts that probably 5-10 years will pass before novel diagnostic scanners to identify these plaques become available in cardiology clinics.

Testing iron as a marker in human arteries
Excess iron in atherosclerotic plaque was noticed decades ago, but little research followed up on that observation, Dr. Kantor says. "The hypothesis then was that iron was the poison that created the plaque, but that was never proven and is in fact unlikely."

Cardiologists now know that plaque can be classified as stable or unstable. Mayo Clinic researchers believe that the amount of iron in the plaque can be seen as a "readout" of prior hemorrhagic, or bleeding, events that put a person at risk for plaque eruption.

In normal heart arteries, small blood vessels known as vasa vasorum bring nutrients to the vessel wall, and when plaque starts to build up inside the artery wall, some of these tiny vessels grow as well to feed them. These vessels can rupture, depositing iron, a component of blood, into the growing plaque. This unstable plaque, which has a large core of dead cells covered by a thin fibrous cap, can eventually rupture, forming a big blood clot that can shut down a heart artery.

"This kind of plaque can bleed and heal, bleed and heal, depositing iron into the buildup," Dr. Kantor says. "This plaque is at risk of breaking up and causing a heart attack."

To conduct this study, the researchers used samples from a unique Mayo Clinic biobank of heart arteries collected over time from autopsies of 400 patients who died from a suspected heart attack. Small sections (1–1.5 inches) from the three main coronary arteries of each patient have been preserved.

In this study, pathologists examined 97 artery samples and separated them into stable and unstable groups based on their appearance under a microscope (dead zones and fiber cap). They classified 31 plaques as stable, 24 as "vulnerable," and 22 as normal and then linked them to patient clinical records to see which patients died from a heart attack.

Then Yu Liu, M.D., Ph.D., the study's first author, applied a stain to the samples to detect iron content. She found iron content in the unstable plaque group was significantly higher than in the other groups.Iron was absent in normal arteries.

In a third step, the researchers scanned a subset of the artery segments using a benchtop micro-CT scanner, and created 3-D images to look for iron deposits in plaque. The CT could identify iron in plaque without the need for staining. "There was a high correlation between the vulnerability of the plaque and the quantity of iron in it," says Dr. Kantor.

Still, non-invasive imaging for plaque does not yet have the necessary resolution to differentiate high risk from low risk plaque in patients, she says, and so the research team is testing other imaging modalities such as photon counting that can overcome these barriers.

Other study authors are Nitin Garg, M.B.B.S.; Joseph Maleszewski, M.D.; Steven Jorgensen; Jia Wang, Ph.D.; Xinhui Duan, Ph.D.; Shuai Leng, Ph.D.; Kay Parker; Cynthia McCollough, Ph.D.; and Erik Ritman, M.D., Ph.D.; all of Mayo Clinic.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu. MayoClinic.com
http://www.mayo.edu

Further reports about: 3-D image Artery Coronary Heart Iron Marker Plaque atherosclerotic plaque blood vessel dead zone heart arteries

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>