Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron in Coronary Artery Plaque is a Marker of Heart Attack Risk

16.11.2010
The iron can be seen on micro-CT scan, holding promise for future imaging to find patients at risk

Plaque in a heart artery looks threatening, but cardiologists know that many of these buildups will not erupt, dislodge and block a vessel, causing a heart attack that can be fatal. Some will, however, and the challenge is to figure out atherosclerotic plaque that is dangerous and treat or remove it.

Now, researchers at Mayo Clinic have shown that iron, derived from blood, is much more prevalent in the kind of plaque that is unstable and is thus more likely to promote a myocardial infarction (MI) — heart attack — and possibly sudden death.

The team of researchers has demonstrated through a variety of experiments that iron buildup may be suitable as a marker of risk for a future MI, they reported today at the American Heart Association's Scientific Sessions 2010 in Chicago.

For example, they have found that Dual Energy Computed Tomography (DECT) and three-dimensional computerized tomography (CT) micro scans can detect excess iron in plaque, thus holding promise that in the future a scanning device might be able to noninvasively detect dangerous plaque formations in patients.

"We know that 70 percent of heart attacks are caused by unstable plaque, so what we really need for our patients is a way to identify the plaque that turns evil and puts them at jeopardy," says cardiologist Birgit Kantor, M.D., the study's lead researcher. "The scans we use now just show narrowing of heart arteries from plaque buildup but that doesn't tell us if the plaque inside those vessels walls is imminently dangerous."

"We think it is possible, based on these findings, to use iron as a natural marker for risk," she says. Dr. Kantor predicts that probably 5-10 years will pass before novel diagnostic scanners to identify these plaques become available in cardiology clinics.

Testing iron as a marker in human arteries
Excess iron in atherosclerotic plaque was noticed decades ago, but little research followed up on that observation, Dr. Kantor says. "The hypothesis then was that iron was the poison that created the plaque, but that was never proven and is in fact unlikely."

Cardiologists now know that plaque can be classified as stable or unstable. Mayo Clinic researchers believe that the amount of iron in the plaque can be seen as a "readout" of prior hemorrhagic, or bleeding, events that put a person at risk for plaque eruption.

In normal heart arteries, small blood vessels known as vasa vasorum bring nutrients to the vessel wall, and when plaque starts to build up inside the artery wall, some of these tiny vessels grow as well to feed them. These vessels can rupture, depositing iron, a component of blood, into the growing plaque. This unstable plaque, which has a large core of dead cells covered by a thin fibrous cap, can eventually rupture, forming a big blood clot that can shut down a heart artery.

"This kind of plaque can bleed and heal, bleed and heal, depositing iron into the buildup," Dr. Kantor says. "This plaque is at risk of breaking up and causing a heart attack."

To conduct this study, the researchers used samples from a unique Mayo Clinic biobank of heart arteries collected over time from autopsies of 400 patients who died from a suspected heart attack. Small sections (1–1.5 inches) from the three main coronary arteries of each patient have been preserved.

In this study, pathologists examined 97 artery samples and separated them into stable and unstable groups based on their appearance under a microscope (dead zones and fiber cap). They classified 31 plaques as stable, 24 as "vulnerable," and 22 as normal and then linked them to patient clinical records to see which patients died from a heart attack.

Then Yu Liu, M.D., Ph.D., the study's first author, applied a stain to the samples to detect iron content. She found iron content in the unstable plaque group was significantly higher than in the other groups.Iron was absent in normal arteries.

In a third step, the researchers scanned a subset of the artery segments using a benchtop micro-CT scanner, and created 3-D images to look for iron deposits in plaque. The CT could identify iron in plaque without the need for staining. "There was a high correlation between the vulnerability of the plaque and the quantity of iron in it," says Dr. Kantor.

Still, non-invasive imaging for plaque does not yet have the necessary resolution to differentiate high risk from low risk plaque in patients, she says, and so the research team is testing other imaging modalities such as photon counting that can overcome these barriers.

Other study authors are Nitin Garg, M.B.B.S.; Joseph Maleszewski, M.D.; Steven Jorgensen; Jia Wang, Ph.D.; Xinhui Duan, Ph.D.; Shuai Leng, Ph.D.; Kay Parker; Cynthia McCollough, Ph.D.; and Erik Ritman, M.D., Ph.D.; all of Mayo Clinic.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu. MayoClinic.com
http://www.mayo.edu

Further reports about: 3-D image Artery Coronary Heart Iron Marker Plaque atherosclerotic plaque blood vessel dead zone heart arteries

More articles from Health and Medicine:

nachricht A better way to measure the stiffness of cancer cells
01.03.2017 | Duke University

nachricht Humans have three times more brown body fat
01.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>