Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into origin of deadly cancer

24.06.2011
Barrett’s esophagus, often a precursor to esophageal cancer, results from residual, embryonic cells

Researchers have discovered a new mechanism for the origin of Barrett's esophagus, an intestine-like growth in the esophagus that is triggered by chronic acid reflux and often progresses to esophageal cancer. Studying mice, the researchers found that Barrett's esophagus arises not from mutant cells in the esophagus but rather a small group of previously overlooked cells present in all adults that can rapidly expand to cancer precursors when the normal esophagus is damaged by acid.

This research will be published online in the June 24th issue of Cell.

Decades of cancer research tells us that most of the common cancers begin with genetic changes that occur over a period of 15 to 20 years, in some cases leading to aggressive cancers. However, for a subset of cancers that appear to be linked to chronic inflammation, this model might not hold.

Barrett's esophagus, which was first described by the Australian surgeon Norman Barrett in 1950, affects two to four million Americans. In this condition, tissue forms in the esophagus that resembles the intestinal tissue normally located much farther down the digestive tract. As a result, a person's chances of developing a deadly esophageal adenocarcinoma increase by 50- to 150-fold. Late stage treatment is largely palliative, so it is important to understand how acid reflux triggers it in the first place.

Research from the laboratory of Frank McKeon, Harvard Medical School professor of cell biology, together with Wa Xian, a postdoctoral researcher at Brigham and Women's Hospital and the Institute of Medical Biology, Singapore, along with an international consortium including Christopher Crum, director of Women's and Perinatal Pathology at Brigham and Women's Hospital, has shown that Barrett's esophagus originates from a minor population of non-esophageal cells left over from early development.

For the past decade, McKeon and his laboratory have been using mouse models to investigate the role of p63, a gene involved in the self-renewal of epithelial stem cells including those of the esophagus. McKeon joined forces two years ago with Wa Xian, an expert in signal transduction in cancer cells, to tackle the vexing problem of the origin of Barrett's esophagus.

At that time, the dominant hypothesis for Barrett's was that acid reflux triggers the esophageal stem cells to make intestine cells rather than normal esophageal tissue. However, McKeon and Xian felt the support for this concept was weak. Taking a different track, they studied a mouse mutant lacking the p63 gene and mimicked the symptoms of acid reflux. As a result, the entire esophagus was covered with a Barrett's-like tissue that proved to be a near exact match with human Barrett's at the gene expression level.

The researchers were particularly surprised by the sheer speed with which this Barrett's esophagus appeared in the mice.

"From the speed alone we knew we were dealing with something different here," said Xia Wang, postdoctoral fellow at Harvard Medical School and co-first author of this work.

Yusuke Yamamoto, a postdoctoral fellow at the Genome Institute of Singapore and also co-first author, added that, "we just had to track the origins of the Barrett's cells back through embryogenesis using our markers from extensive bioinformatics."

In essence, the investigators tracked the precancerous growth to a discrete group of leftover embryonic cells wedged between the junction of the esophagus and the stomach--precisely where endoscopists have argued Barrett's esophagus begins. As predicted by the mouse studies, the researchers identified a group of embryonic cells exactly at the junction between the esophagus and the stomach in all normal humans.

"Barrett's arises from this discrete group of pre-existing, residual embryonic cells present in all adults that seemingly lie-in-wait for a chance to take over when the esophagus is damaged," said McKeon. Added Xian, "We know these embryonic cells have different gene expression patterns from all normal tissues and this makes them inviting targets for therapies to destroy Barrett's before it progresses to cancer."

The therapeutic opportunities of this work are potentially immense.

"We are directing monoclonal antibodies to cell surface markers that can identify these precursor cells, so we may have a new opportunity to intervene therapeutically and prevent Barrett's esophagus in at-risk patients," said Wa Xian.

"Additionally," noted McKeon, "we are cloning the stem cells for both these precursors and for Barrett's esophagus itself, and these should represent critical targets for both monoclonal antibodies and small molecule inhibitors."

Finally, there is reason to believe that this unusual mechanism might apply to a subset of other lethal cancers with unsure origins.

Crum noted that "some very aggressive cancers arise at junctions of two tissues and these deserve closer scrutiny to get at their origins if we are to surmount these diseases."

This work was supported by the National Institutes of Health.

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>