Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Indiana University neuroscientists map a new target to wipe pain away

Researchers at the Indiana University School of Medicine have discovered a peptide that short circuits a pathway for chronic pain. Unlike current treatments this peptide does not exhibit deleterious side effects such as reduced motor coordination, memory loss, or depression, according to an article in Nature Medicine posted online June 5, 2011.

The peptide, CBD3, has been shown in mice to interfere with signals that navigate calcium channels to produce pain. Unlike other substances that block pain signals, CBD3 does not directly inhibit the influx of calcium. This is important as influx of calcium regulates heart rhythm and vital functions in other organs.

Rajesh Khanna, Ph.D., assistant professor of pharmacology and toxicology at the Indiana University School of Medicine, said the peptide discovered by him and his colleagues is potentially safer to use than addictive opioids or cone snail toxin Prialt®–a recognized analgesic that is injected into the spinal column, both of which can cause respiratory distress, cardiac irregularities and other problems.

"After opioids–the gold standard for pain control -- the next target is calcium channels," said Dr. Khanna. "Along the pain pathway in the spinal cord, there are pain-sensing neurons called nociceptors that have an abundance of calcium channels."

Earlier international research has shown that the calcium channel is a key player within the pathway for pain signals. Based on work from Dr. Khanna's laboratory, it is also accepted that an axonal protein, CRMP-2, binds to the calcium channel "acting like a remote control" to modulate transmission of excitability and pain signals, Dr. Khanna explained.

He and his colleagues discovered the CBD3 peptide, a portion of the CRMP-2 protein, realizing that its smaller size would be beneficial in producing a synthetic version for drug development.

CBD3 can be given systemically and blocks pain in a variety of acute as well as chronic pain models, he said. The novel peptide binds to the calcium channel and reduces the number of excitability signals without disrupting the beneficial global calcium flow. Upon reaching the brain, these signals are interpreted as the sensation of pain.

"Since our approach does not directly inhibit calcium entry through voltage-gated channels, we expect that this molecule will be more specific and have fewer side effects than currently available analgesics," said Dr. Khanna. "We anticipate that this peptide will serve as a novel pharmacological therapeutic for the relief of chronic pain."

Dr. Khanna is a primary investigator in the Paul and Carole Stark Neurosciences Research Institute and the Indiana Spinal Cord and Brain Injury Research Group. His Stark Neuroscience Institute colleagues involved in the research are first author Joel M. Brittain and second author Sarah M. Wilson, both PhD students in his laboratory, and co-first-author Djane B. Duarte, Ph.D., a post-doctoral fellow. Members of the Harvard University Department of Anesthesiology also assisted with the research.

Funding for the research was provided in part by a American Heart Association National Scientist Development Grant, the Ralph W. and Grace M. Showalter Research Trust Fund and the Indiana Genomics Initiative.

Mary L. Hardin | EurekAlert!
Further information:

Further reports about: CBD3 CRMP-2 Medicine Neuroscience calcium channel chronic pain

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>