Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In first moments of infection, a division and a decision

03.03.2014

UC San Diego scientists explain how and when T cells become effector or memory lymphocytes

Using technologies and computational modeling that trace the destiny of single cells, researchers at the University of California, San Diego School of Medicine describe for the first time the earliest stages of fate determination among white blood cells called T lymphocytes, providing new insights that may help drug developers create more effective, longer-lasting vaccines against microbial pathogens or cancer.

T Lymphocyte

This is the T lymphocyte.

Credit: National Institute of Allergy and Infectious Diseases

The findings are published in the March 2, 2014 online issue of Nature Immunology.

Naïve T lymphocytes patrol the front lines of the human body’s defense against infection, circulating in blood and tissues, searching for invasive microbes and other foreign antigens. They’re called “naïve” because they have not yet encountered an invader. When they do, these T cells activate and divide, giving rise to two types of daughter cells: “effector lymphocytes” responsible for immediate host defense and “memory lymphocytes” that provide long-term protection from similar infections.

“Researchers have been trying for a very long time to understand when and how T lymphocytes give rise to effector and memory cells during an infection,” said John T. Chang, MD, assistant professor in the Department of Medicine and the study’s co-principal investigator, along with Gene W. Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and Institute for Genomic Medicine.

However, all studies up to this point were based on analyses on bulk populations of cells, making it impossible to understand fate decisions made by individual cells. First authors Janilyn Arsenio, a postdoctoral fellow in the Chang lab and Boyko Kakaradov, a graduate student in the Yeo lab and UCSD Bioinformatics graduate program said that they took advantage of recent technological advances in single-cell gene expression profiling and cutting-edge machine-learning algorithms to address this question on a level of detail that was not previously possible.

Chang, Yeo and colleagues discovered that the decision by an individual T cell to produce effector and memory cells is made almost at the moment of infection. “The ‘mother’ lymphocyte seems to divide into two daughter cells that are already different from birth,” said Chang, “with one becoming an effector cell while its sister becomes a memory cell.”

Chang noted that the primary purpose of vaccines is to produce strong and durable immune protection, which depends heavily upon generation of memory lymphocytes. “Our work suggests that the way T lymphocytes divide early during a microbial infection might be critical to whether or not they give rise to long-lived memory cells. Strategies that improve this process could potentially enhance durable immunity and help us to design more effective vaccines.”

###

Co-authors of the study include Janilyn Arsenio, Patrick J. Metz and Stephanie H. Kim, UCSD Department of Medicine; Boyko Kakaradov, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD; and Gene W. Yeo, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD and National University of Singapore and Genome Institute of Singapore.

Funding for this research came, in part, from National Institutes of Health (grants DK080949, OD008469, AI095277, HG004659 and NS075449), UCSD Digestive Diseases Research Development Center, the California Institute for Regenerative Medicine, the National Science Foundation, the Alfred P. Sloan Foundation and the Howard Hughes Medical Institute.

Media contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Bioinformatics Cellular Medicine Molecular Stem UCSD blood lymphocytes microbial vaccines

More articles from Health and Medicine:

nachricht Understanding the Body’s Response to Worms and Allergies
24.04.2015 | University of Manchester

nachricht Caring for blindness: A new protein in sight?
22.04.2015 | NSERM (Institut national de la santé et de la recherche médicale)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux

28.04.2015 | Innovative Products

Discovery of an unexpected function of a protein linked to neurodegenerative diseases

28.04.2015 | Life Sciences

Rubber from dandelions / Scientists identify key components in the formation of rubber

28.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>