Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In first moments of infection, a division and a decision

03.03.2014

UC San Diego scientists explain how and when T cells become effector or memory lymphocytes

T Lymphocyte

This is the T lymphocyte.

Credit: National Institute of Allergy and Infectious Diseases

Using technologies and computational modeling that trace the destiny of single cells, researchers at the University of California, San Diego School of Medicine describe for the first time the earliest stages of fate determination among white blood cells called T lymphocytes, providing new insights that may help drug developers create more effective, longer-lasting vaccines against microbial pathogens or cancer.

The findings are published in the March 2, 2014 online issue of Nature Immunology.

Naïve T lymphocytes patrol the front lines of the human body’s defense against infection, circulating in blood and tissues, searching for invasive microbes and other foreign antigens. They’re called “naïve” because they have not yet encountered an invader. When they do, these T cells activate and divide, giving rise to two types of daughter cells: “effector lymphocytes” responsible for immediate host defense and “memory lymphocytes” that provide long-term protection from similar infections.

“Researchers have been trying for a very long time to understand when and how T lymphocytes give rise to effector and memory cells during an infection,” said John T. Chang, MD, assistant professor in the Department of Medicine and the study’s co-principal investigator, along with Gene W. Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and Institute for Genomic Medicine.

However, all studies up to this point were based on analyses on bulk populations of cells, making it impossible to understand fate decisions made by individual cells. First authors Janilyn Arsenio, a postdoctoral fellow in the Chang lab and Boyko Kakaradov, a graduate student in the Yeo lab and UCSD Bioinformatics graduate program said that they took advantage of recent technological advances in single-cell gene expression profiling and cutting-edge machine-learning algorithms to address this question on a level of detail that was not previously possible.

Chang, Yeo and colleagues discovered that the decision by an individual T cell to produce effector and memory cells is made almost at the moment of infection. “The ‘mother’ lymphocyte seems to divide into two daughter cells that are already different from birth,” said Chang, “with one becoming an effector cell while its sister becomes a memory cell.”

Chang noted that the primary purpose of vaccines is to produce strong and durable immune protection, which depends heavily upon generation of memory lymphocytes. “Our work suggests that the way T lymphocytes divide early during a microbial infection might be critical to whether or not they give rise to long-lived memory cells. Strategies that improve this process could potentially enhance durable immunity and help us to design more effective vaccines.”

###

Co-authors of the study include Janilyn Arsenio, Patrick J. Metz and Stephanie H. Kim, UCSD Department of Medicine; Boyko Kakaradov, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD; and Gene W. Yeo, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD and National University of Singapore and Genome Institute of Singapore.

Funding for this research came, in part, from National Institutes of Health (grants DK080949, OD008469, AI095277, HG004659 and NS075449), UCSD Digestive Diseases Research Development Center, the California Institute for Regenerative Medicine, the National Science Foundation, the Alfred P. Sloan Foundation and the Howard Hughes Medical Institute.

Media contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Bioinformatics Cellular Medicine Molecular Stem UCSD blood lymphocytes microbial vaccines

More articles from Health and Medicine:

nachricht In mice, vaccine stops urinary tract infections linked to catheters
18.09.2014 | Washington University School of Medicine

nachricht NAMS issues first comprehensive recommendations on care of women at menopause and beyond
17.09.2014 | The North American Menopause Society (NAMS)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

KTH enters the petaflop era with new supercomputer

18.09.2014 | Physics and Astronomy

Researchers convert carbon dioxide into a valuable resource

18.09.2014 | Process Engineering

How do neutron bells toll on the skin of the atomic nucleus?

18.09.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>