Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In first moments of infection, a division and a decision

03.03.2014

UC San Diego scientists explain how and when T cells become effector or memory lymphocytes

Using technologies and computational modeling that trace the destiny of single cells, researchers at the University of California, San Diego School of Medicine describe for the first time the earliest stages of fate determination among white blood cells called T lymphocytes, providing new insights that may help drug developers create more effective, longer-lasting vaccines against microbial pathogens or cancer.

T Lymphocyte

This is the T lymphocyte.

Credit: National Institute of Allergy and Infectious Diseases

The findings are published in the March 2, 2014 online issue of Nature Immunology.

Naïve T lymphocytes patrol the front lines of the human body’s defense against infection, circulating in blood and tissues, searching for invasive microbes and other foreign antigens. They’re called “naïve” because they have not yet encountered an invader. When they do, these T cells activate and divide, giving rise to two types of daughter cells: “effector lymphocytes” responsible for immediate host defense and “memory lymphocytes” that provide long-term protection from similar infections.

“Researchers have been trying for a very long time to understand when and how T lymphocytes give rise to effector and memory cells during an infection,” said John T. Chang, MD, assistant professor in the Department of Medicine and the study’s co-principal investigator, along with Gene W. Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and Institute for Genomic Medicine.

However, all studies up to this point were based on analyses on bulk populations of cells, making it impossible to understand fate decisions made by individual cells. First authors Janilyn Arsenio, a postdoctoral fellow in the Chang lab and Boyko Kakaradov, a graduate student in the Yeo lab and UCSD Bioinformatics graduate program said that they took advantage of recent technological advances in single-cell gene expression profiling and cutting-edge machine-learning algorithms to address this question on a level of detail that was not previously possible.

Chang, Yeo and colleagues discovered that the decision by an individual T cell to produce effector and memory cells is made almost at the moment of infection. “The ‘mother’ lymphocyte seems to divide into two daughter cells that are already different from birth,” said Chang, “with one becoming an effector cell while its sister becomes a memory cell.”

Chang noted that the primary purpose of vaccines is to produce strong and durable immune protection, which depends heavily upon generation of memory lymphocytes. “Our work suggests that the way T lymphocytes divide early during a microbial infection might be critical to whether or not they give rise to long-lived memory cells. Strategies that improve this process could potentially enhance durable immunity and help us to design more effective vaccines.”

###

Co-authors of the study include Janilyn Arsenio, Patrick J. Metz and Stephanie H. Kim, UCSD Department of Medicine; Boyko Kakaradov, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD; and Gene W. Yeo, UCSD Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics programs and Institute for Genomic Medicine, UCSD and National University of Singapore and Genome Institute of Singapore.

Funding for this research came, in part, from National Institutes of Health (grants DK080949, OD008469, AI095277, HG004659 and NS075449), UCSD Digestive Diseases Research Development Center, the California Institute for Regenerative Medicine, the National Science Foundation, the Alfred P. Sloan Foundation and the Howard Hughes Medical Institute.

Media contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Bioinformatics Cellular Medicine Molecular Stem UCSD blood lymphocytes microbial vaccines

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>