Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important breakthrough in research on the molecular mechanisms underlying the pathogenesis of asthma

19.08.2010
Scientists in Mainz publish new discoveries in asthma research

Scientists at the University Medical Center Mainz have taken a further step towards improving our understanding of how asthma develops. These new findings show that the gene-regulating molecule "IRF4" plays a key role in the development of T helper 9 cells , which can play a major part in the development of this chronic, inflammatory illness of the respiratory tract.

The findings were proven for the first time in research carried out by the work group led by Dr. Tobias Bopp and Professor Dr. Edgar Schmitt from the Institute for Immunology, which was recently published in the internationally renowned journal "Immunity".

Over the past 100 years, asthma has developed from a relatively rare lung disease into an epidemic. Around 300 million people suffer from asthma worldwide. Between five and ten percent of the German population suffer from asthma. And twice as many men suffer from the illness than women. We know that allergic immune reactions can contribute significantly to the development of asthma. Hyperreactive Th cells, which form part of the body's own immune system, play a major role in the manifestation of this illness.

Different T cells carry out various tasks in the body's immune defense: Cells with a helper function known as T helper (Th) cells produce various cytokines that enable the different immune defense cells to communicate with each other, which in turn helps them launch a coordinated attack on pathogens or even tumour cells. However, if these cells react disproportionately to harmless substances, they can also cause disease. T helper cells can be divided into several sub-groups, including Th9 cells. These Th9 cells were characterized in two phases: They were described for the first time in 1994 as interleukin (IL)-9-producing T helper cells by Professor Schmitt, and finally became known as Th9 cells in 2008.

"Until now, only evidence was provided for the existence of Th9 cells and the crucial importance of IL-9 in the pathogenesis of asthma. However, as other cells beside T cells can produce IL-9 the major source of this cytokine was far from being definitive. To enable targeted therapeutic intervention, however, it was necessary to uncover the basic molecular mechanism underlying the development and function of IL-9-producing Th9 cells. Our analyses finally showed that IRF4 – a molecule that plays a key role in the regulation of genes – is essential for the development and function of Th9 cells," explain Dr. Tobias Bopp and Professor Dr. Edgar Schmitt from the Institute for Immunology.

The functional studies were carried out mainly on mice. The starting point was the observation that T cells in mice missing an intact IRF4 molecule do not develop into Th9 cells and are therefore unable to produce significant quantities of IL-9. As IL-9 is responsible for a variety of different asthma symptoms, the scientists led by Dr. Tobias Bopp and Professor Dr. Edgar Schmitt investigated to what extent IRF4 and consequently Th9 cells contribute to development and manifestation of asthma. These experiments showed that a failure in Th9 development prevents IRF4-deficient mice from asthma. Transfer of Th9 cells led to reappearance of asthma symptoms in such mice confirming the importance of this Th-subpopulation for the induction of asthma.

Professor Dr. Hansjörg Schild, Director of the Institute for Immunology, stresses how important basic research is for the development of new therapeutic strategies: "Asthma has been on the increase for decades in industrial countries. The discovery of Dr. Tobias Bopp and Professor Dr. Edgar Schmitt could provide the first step to improve existing therapeutic treatments but we still have a long and arduous journey ahead." The next step of the research process is to screen substances, among them naturally occurring molecules/agents, that suppress the production of IL-9 to develop innovative approaches for the treatment of asthma.

This view is also shared by Scientific Director of the University Medical Center Mainz, Professor Dr. Dr. Reinhard Urban: "Immunological illnesses are playing an ever greater role in our society. It is therefore only logical that the researchers in the University Medical Center should focus on the basic cellular mechanisms and use their results to help improve treatment for patients."

Original publication:
Valérie Staudt et al., “Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells”, Immunity (2010), doi:10.1016/j.immuni.2010.07.014
Publication in Immunity: online on July 29, 2010, in print on August 29, 2010
(download: http://www.cell.com/immunity/newarticles).
Contact
Dr. Tobias Bopp
Institute for Immunology
Phone +49 (0)6131 17-6175, Fax +49 (0)6131 17-6260
E-Mail: boppt@uni-mainz.de, Homepage: http://www.immunologie-mainz.de
Press contact
Tanja Rolletter, Press officer,
Phone +49 (0) 6131 17-7424, Fax +49 (0)6131 17-3496, E-Mail: pr@unimedizin-mainz.de

Caroline Bahnemann | idw
Further information:
http://www.cell.com/immunity/newarticles
http://www.immunologie-mainz.de

Further reports about: IL-9 IRF4 Immunology T cells T helper cells Th9 cellular mechanism immune defense immunity

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>