Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important breakthrough in research on the molecular mechanisms underlying the pathogenesis of asthma

19.08.2010
Scientists in Mainz publish new discoveries in asthma research

Scientists at the University Medical Center Mainz have taken a further step towards improving our understanding of how asthma develops. These new findings show that the gene-regulating molecule "IRF4" plays a key role in the development of T helper 9 cells , which can play a major part in the development of this chronic, inflammatory illness of the respiratory tract.

The findings were proven for the first time in research carried out by the work group led by Dr. Tobias Bopp and Professor Dr. Edgar Schmitt from the Institute for Immunology, which was recently published in the internationally renowned journal "Immunity".

Over the past 100 years, asthma has developed from a relatively rare lung disease into an epidemic. Around 300 million people suffer from asthma worldwide. Between five and ten percent of the German population suffer from asthma. And twice as many men suffer from the illness than women. We know that allergic immune reactions can contribute significantly to the development of asthma. Hyperreactive Th cells, which form part of the body's own immune system, play a major role in the manifestation of this illness.

Different T cells carry out various tasks in the body's immune defense: Cells with a helper function known as T helper (Th) cells produce various cytokines that enable the different immune defense cells to communicate with each other, which in turn helps them launch a coordinated attack on pathogens or even tumour cells. However, if these cells react disproportionately to harmless substances, they can also cause disease. T helper cells can be divided into several sub-groups, including Th9 cells. These Th9 cells were characterized in two phases: They were described for the first time in 1994 as interleukin (IL)-9-producing T helper cells by Professor Schmitt, and finally became known as Th9 cells in 2008.

"Until now, only evidence was provided for the existence of Th9 cells and the crucial importance of IL-9 in the pathogenesis of asthma. However, as other cells beside T cells can produce IL-9 the major source of this cytokine was far from being definitive. To enable targeted therapeutic intervention, however, it was necessary to uncover the basic molecular mechanism underlying the development and function of IL-9-producing Th9 cells. Our analyses finally showed that IRF4 – a molecule that plays a key role in the regulation of genes – is essential for the development and function of Th9 cells," explain Dr. Tobias Bopp and Professor Dr. Edgar Schmitt from the Institute for Immunology.

The functional studies were carried out mainly on mice. The starting point was the observation that T cells in mice missing an intact IRF4 molecule do not develop into Th9 cells and are therefore unable to produce significant quantities of IL-9. As IL-9 is responsible for a variety of different asthma symptoms, the scientists led by Dr. Tobias Bopp and Professor Dr. Edgar Schmitt investigated to what extent IRF4 and consequently Th9 cells contribute to development and manifestation of asthma. These experiments showed that a failure in Th9 development prevents IRF4-deficient mice from asthma. Transfer of Th9 cells led to reappearance of asthma symptoms in such mice confirming the importance of this Th-subpopulation for the induction of asthma.

Professor Dr. Hansjörg Schild, Director of the Institute for Immunology, stresses how important basic research is for the development of new therapeutic strategies: "Asthma has been on the increase for decades in industrial countries. The discovery of Dr. Tobias Bopp and Professor Dr. Edgar Schmitt could provide the first step to improve existing therapeutic treatments but we still have a long and arduous journey ahead." The next step of the research process is to screen substances, among them naturally occurring molecules/agents, that suppress the production of IL-9 to develop innovative approaches for the treatment of asthma.

This view is also shared by Scientific Director of the University Medical Center Mainz, Professor Dr. Dr. Reinhard Urban: "Immunological illnesses are playing an ever greater role in our society. It is therefore only logical that the researchers in the University Medical Center should focus on the basic cellular mechanisms and use their results to help improve treatment for patients."

Original publication:
Valérie Staudt et al., “Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells”, Immunity (2010), doi:10.1016/j.immuni.2010.07.014
Publication in Immunity: online on July 29, 2010, in print on August 29, 2010
(download: http://www.cell.com/immunity/newarticles).
Contact
Dr. Tobias Bopp
Institute for Immunology
Phone +49 (0)6131 17-6175, Fax +49 (0)6131 17-6260
E-Mail: boppt@uni-mainz.de, Homepage: http://www.immunologie-mainz.de
Press contact
Tanja Rolletter, Press officer,
Phone +49 (0) 6131 17-7424, Fax +49 (0)6131 17-3496, E-Mail: pr@unimedizin-mainz.de

Caroline Bahnemann | idw
Further information:
http://www.cell.com/immunity/newarticles
http://www.immunologie-mainz.de

Further reports about: IL-9 IRF4 Immunology T cells T helper cells Th9 cellular mechanism immune defense immunity

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>