Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging agent enables better cancer detection, more accurate staging

21.03.2013
Drug designed and developed at UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have shown that a new imaging dye, designed and developed at UC San Diego Moores Cancer Center, is an effective agent in detecting and mapping cancers that have reached the lymph nodes.

The radioactive dye called Technetium Tc-99m tilmanocept, successfully identified cancerous lymph nodes and did a better job of marking cancers than the current standard dye. Results of the Phase III clinical trial published online today in the Annals of Surgical Oncology.

"Tilmanocept is a novel engineered radiopharmaceutical specifically designed for sentinel lymph node detection," said David R. Vera, PhD, the drug's inventor, who is a professor in the UCSD Department of Radiology. "The molecule, developed at UC San Diego School of Medicine, offers surgeons a new tool to accurately detect and stage melanoma and breast cancers while in the operating room."

On March 13, 2013, tilmanocept received U.S. Food and Drug Administration (FDA) approval.

After a cancer diagnosis, surgeons want to be sure that the disease has not spread to a patient's lymph nodes, especially the sentinel nodes that may be the first place that a cancer reaches. The lymphatic system is a network of vessels and ducts that carry disease-fighting cells throughout the body, but can also act as a way for cancer cells to access the bloodstream. By surgically removing and examining the sentinel nodes that drain a tumor, doctors can better determine if a cancer has spread.

"Tilmanocept advances the molecular targeting in breast cancer. It's the first agent that is binding to a lymph node because it is a lymph node that plays an important role in metastasis," said Anne Wallace, MD, professor of surgery, UC San Diego School of Medicine and principal investigator of the study. "Tilmanocept's ability to identify more cancer containing nodes will lead to better post-operative care for patients, especially those patients who had more than one positive sentinel node."

Doctors compared injections of tilmanocept, also called Lymphoseek, and the standard blue dye into the tumor area. Then, using a handheld radiation detector, they found the lymph nodes that had taken up the drugs radioactivity. The researchers found that more than 99 percent of sentinel lymph nodes containing blue dye also contained tilmanocept. Of these nodes, 18 percent were positive for cancer. Ninety-four percent of the malignancies were detected by the new radiopharmaceutical whereas the blue dye only detected 76 percent.

"Tilmanocept is just as accurate as current techniques, simple to use, takes less time to find lymph nodes and is cleared faster from the body. This could standardize the process of lymph node mapping and make the process easier, particularly for less experienced surgeons," said Wallace, chief of plastic surgery at UC San Diego Health System and director of the Breast Care Unit at UC San Diego Moores Cancer Center.

Tilmanocept was originally developed at UC San Diego by Vera. Wallace advanced the agent through Phase 1 clinical trials with funding provided by the Susan G. Komen Breast Cancer Foundation and the American Cancer Society. The Phase III study was supported by Navidea Biopharmaceuticals, Inc. based in Dublin, Ohio.

Lymphoseek's safety and effectiveness were established in two clinical trials of 332 patients with melanoma or breast cancer. The Phase III clinical trial took place at 13 medical centers involving 148 patients who had both melanoma and breast cancer. The most common side effects identified in clinical trials was pain or irritation at the injection site reported by two patients.

Study collaborators include: Linda Han, MD, Indiana University Simon Breast Center; Stephen P. Povoski, MD, Wexner Medical Center; Kenneth Deck, MD, South Orange County Medical; Schlomo Schneebaum, MD, Sourasky Medical Center; Nathan Hall, MD, PhD, Wexner Medical Center; Carl K. Hoh, MD, and Karl Limmer, MD, UC San Diego; Helen Krontiras, MD, University of Alabama; Thomas Frazier, MD, Bryn Mawr Hospital; Charles Cox, MD, University of South Florida; Eli Avisar, University of Miami Hospital; Mark Faries, MD, John Wayne Cancer Institute; and Dennis King, PhD, and Lori Christman, PhD, STATKING Clinical Services.

Jackie Carr | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>