Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone ghrelin can boost resistance to Parkinson's disease

27.11.2009
Ghrelin, a hormone produced in the stomach, may be used to boost resistance to, or slow, the development of Parkinson's disease, Yale School of Medicine researchers report in a study published in a recent issue of the Journal of Neuroscience.

Parkinson's disease is caused by a degeneration of dopamine neurons in an area of the midbrain known as the substantia nigra, which is responsible for dopamine production.

Reduced production of dopamine in late-stage Parkinson's causes symptoms such as severe difficulty in walking, restricted movements, delays in moving, lack of appetite, difficulty eating, periods of remaining motionless (known as "freezing") and head and limb tremors.

When the dopamine cells get sick and die, Parkinson's can develop. Yale researcher Tamas Horvath and colleagues found that ghrelin is protective of the dopamine neurons. "We also found that, in addition to its influence on appetite, ghrelin is responsible for direct activation of the brain's dopamine cells," said Horvath, chair and professor of comparative medicine and professor of neurobiology and obstetrics & gynecology at Yale School of Medicine. "Because this hormone originates from the stomach, it is circulating normally in the body, so it could easily be used to boost resistance to Parkinson's or it could be used to slow the development of the disease."

Horvath and colleagues conducted the study in mice that received ghrelin supplementation and in mice that were deficient in ghrelin hormone and in the ghrelin receptor. When compared to controls, mice with impaired ghrelin action in the brain had more loss of dopamine. Horvath said the results could be easily translated to human use because the ghrelin system is preserved through various species.

Ghrelin was previously associated with the release of growth hormones, appetite, learning, memory, and with the reward circuitry of the brain that regulates food cravings. Recent human studies show that body mass index, stored fat and diabetes are linked to Parkinson's disease. Past research also shows that obesity is a risk factor for neurodegeneration in mice.

In future work, Horvath and his team will try to determine ghrelin levels in both healthy individuals and Parkinson's patients. He will also determine whether altered ghrelin levels might be a biomarker of disease development and vulnerability.

The study was supported by the Michael J. Fox Foundation for Parkinson's Research.

Other authors on the study include Zane B. Andrews, Derek Erion, Rudolph Beiler, Zhong-Wu Liu, Alfonso Abizaid, Jeffrey Zigman, John D. Elsworth, Joseph M. Savitt, Richard DiMarchi, Matthias Tschoep, Robert H. Roth and Xiao-Bing Gao.

Citation: The Journal of Neuroscience 29(45) 14057-14065.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>