Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Glucose Levels Could Impair Ferroelectricity in Body's Connective Tissues

17.04.2013
High sugar levels in the body come at a cost to health. New research suggests that more sugar in the body could damage the elastic proteins that help us breathe and pump blood. The findings could have health implications for diabetics, who have high blood-glucose levels.

Researchers at the University of Washington and Boston University have discovered that a certain type of protein found in organs that repeatedly stretch and retract – such as the heart and lungs – is the source for a favorable electrical property that could help build and support healthy connective tissues. But when exposed to sugar, some of the proteins no longer could perform their function, according to findings published April 15 in the journal Physical Review Letters.

The property, called ferroelectricity, is a response to an electric field in which a molecule switches from having a positive to a negative charge. Only recently discovered in animal tissues, researchers have traced this property to elastin and found that when exposed to sugar, the elastin protein sometimes slows or stops its ferroelectric switching. This could lead to the hardening of those tissues and, ultimately, degrade an artery or ligament.

"This finding is important because it tells us the origin of the ferroelectric switching phenomenon and also suggests it's not an isolated occurrence in one type of tissue as we thought," said co-corresponding author Jiangyu Li, a UW associate professor of mechanical engineering. "This could be associated with aging and diabetes, which I think gives more importance to the phenomenon."

About a year ago, Li and collaborators discovered ferroelectric switching in mammalian tissues, a surprising first for the field. Ferroelectricity is common in synthetic materials and is used for displays, memory storage and sensors. Li's research team found that the wall of a pig's aorta, the largest blood vessel carrying blood to the heart, exhibits ferroelectric switching properties.

Li said that discovery left researchers with a lot of questions, including whether this property is found in other soft tissues and the health implications of its presence. Observing differences in ferroelectric behavior at the protein level has helped to answer some of those questions.

The research team separated the aortic tissue into two types of proteins, collagen and elastin. Fibrous collagen is widespread in biological tissues, while elastin has only been found in animals with a backbone. Elastin, as its name suggests, is springy and helps the heart and lungs stretch and contract. Ferroelectric switching gives elastin the flexibility needed to perform repeated pulses as with an artery.

When researchers treated the elastin with sugar, they found that glucose suppressed ferroelectric switching by up to 50 percent. This interaction between sugar and protein mimics a natural process called glycation, in which sugar molecules attach to proteins, degrading their structure and function. Glycation happens naturally when we age and is associated with a number of diseases such as diabetes, high blood pressure and arteriosclerosis, a thickening and hardening of the arteries.

The research team has focused solely on the aortic tissues, but this finding likely applies to other biological tissues that have the protein elastin, such as the lungs and skin.

"I would expect the same phenomena will be observed in those tissues and organs as well," Li said. "It will be more common than what we originally thought."

Researchers next will drill down even more to look at the molecular mechanics of ferroelectric switching and further try to connect the process with disease onset.

Co-authors are Yuanming Liu, Nataly Q. Chen and Feiyue Ma at the UW, and Yanhang Zhang, Yunjie Wang and Ming-Jay Chow at Boston University.

The research was funded by the National Science Foundation, the National Institutes of Health, the UW and a NASA Space Technology Research Fellowship.

For more information, contact Li at 206-543-6226 or jjli@uw.edu.

Li's faculty webpage: http://www.me.washington.edu/research/faculty/jjli/index.php

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>