Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high definition fiber tracking reveals damage caused by traumatic brain injury, Pitt team finds

02.03.2012
A powerful new imaging technique called High Definition Fiber Tracking (HDFT) will allow doctors to clearly see for the first time neural connections broken by traumatic brain injury (TBI) and other disorders, much like X-rays show a fractured bone, according to researchers from the University of Pittsburgh in a report published online today in the Journal of Neurosurgery.

In the report, the researchers describe the case of a 32-year-old man who wasn't wearing a helmet when his all-terrain vehicle crashed. Initially, his CT scans showed bleeding and swelling on the right side of the brain, which controls left-sided body movement. A week later, while the man was still in a coma, a conventional MRI scan showed brain bruising and swelling in the same area. When he awoke three weeks later, the man couldn't move his left leg, arm and hand.

"There are about 1.7 million cases of TBI in the country each year, and all too often conventional scans show no injury or show improvement over time even though the patient continues to struggle," said co-senior author and UPMC neurosurgeon David O. Okonkwo, M.D., Ph.D., associate professor, Department of Neurological Surgery, Pitt School of Medicine. "Until now, we have had no objective way of identifying how the injury damaged the patient's brain tissue, predicting how the patient would fare, or planning rehabilitation to maximize the recovery."

HDFT might be able to provide those answers, said co-senior author Walter Schneider, Ph.D., professor of psychology at Pitt's Learning Research and Development Center (LRDC), who led the team that developed the technology. Data from sophisticated MRI scanners is processed through computer algorithms to reveal the wiring of the brain in vivid detail and to pinpoint breaks in the cables, called fiber tracts. Each tract contains millions of neuronal connections.

"In our experiments, HDFT has been able to identify disruptions in neural pathways with a clarity that no other method can see," Dr. Schneider said. "With it, we can virtually dissect 40 major fiber tracts in the brain to find damaged areas and quantify the proportion of fibers lost relative to the uninjured side of the brain or to the brains of healthy individuals. Now, we can clearly see breaks and identify which parts of the brain have lost connections."

HDFT scans of the study patient's brain were performed four and 10 months after he was injured; he also had another scan performed with current state-of the-art diffusion tensor imaging (DTI), an imaging modality that collects data points from 51 directions, while HDFT is based on data from 257 directions. For the latter, the injury site was compared to the healthy side of his brain, as well as to HDFT brain scans from six healthy individuals.

Only the HDFT scan identified a lesion in a motor fiber pathway of the brain that correlated with the patient's symptoms of left-sided weakness, including mostly intact fibers in the region controlling his left leg and extensive breaks in the region controlling his left hand. The patient eventually recovered movement in his left leg and arm by six months after the accident, but still could not use his wrist and fingers effectively 10 months later.

Memory loss, language problems, personality changes and other brain changes occur with TBI, which the researchers are exploring with HDFT in other research protocols.

UPMC neurosurgeons also have used the technology to supplement conventional imaging, noted Robert Friedlander, M.D., professor and chair, Department of Neurological Surgery, Pitt School of Medicine, and UPMC Endowed Professor of Neurosurgery and Neurobiology. He is not a member of this research study.

"I have used HDFT scans to map my approach to removing certain tumors and vascular abnormalities that lie in areas of the brain that cannot be reached without going through normal tissue," he said. "It shows me where significant functional pathways are relative to the lesion, so that I can make better decisions about which fiber tracts must be avoided and what might be an acceptable sacrifice to maintain the patient's best quality of life after surgery."

Dr. Okonkwo noted that the patient and his family were relieved to learn that there was evidence of brain damage to explain his ongoing difficulties. The team continues to evaluate and validate HDFT's utility as a brain imaging tool, so it is not yet routinely available.

"We have been wowed by the detailed, meaningful images we can get with this technology," Dr. Okonkwo said. "HDFT has the potential to be a game-changer in the way we handle TBI and other brain disorders."

Co-authors include lead author Samuel L. Shin, Ph.D., Allison J. Hricik, M.S., Megan Maserati, and Ava M. Puccio, Ph.D., all of the Department of Neurological Surgery; Timothy Verstynen, Ph.D., Sudhir Pathak, M.S., and Kevin Jarbo, all of LRDC; and Sue R. Beers, of the Department of Psychiatry, all of the University of Pittsburgh. The study was funded by the Defense Advanced Research Projects Agency.

For video and images, contact Anita Srikameswaran at SrikamAV@upmc.edu or Tim Betler at BetlerTC@upmc.edu.

For more information about the Schneider lab's HDFT research efforts, go to www.hdft.info

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: CT scan HDFT LRDC MRI MRI scan MRI scanner Medicine Neurosurgery Pitt vaccine Prostate Surgery UPMC neurological

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>