Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herpes virus exploits immune response to bolster infection

07.06.2013
Researchers at the University of California, San Diego School of Medicine and colleagues report that the herpes simplex virus type-1 (HSV-1), which affects an estimated 50 to 80 percent of all American adults, exploits an immune system receptor to boost its infectivity and ability to cause disease.

The findings are published in the June 6, 2013 issue of Nature Communications.

HSV-1 is a persistent and problematic pathogen. Typically, it infects victims through oral secretions (kissing, sharing a contaminated toothbrush) or through openings in the skin. In healthy people, the result may be cold sores or fever blisters. In people with compromised immune systems, HSV-1 can pose more serious and chronic health problems.

It can spread, for example, to organs like the brain, lungs and liver, where the infection may become life-threatening. Some patients, such as those with atopic dermatitis – a common form of eczema that accounts for roughly 20 percent of all dermatologic referrals, are especially vulnerable to serious complications stemming from an HSV-1 infection.

Led by principal investigator Richard L. Gallo, MD, PhD, professor of medicine and chief of UC San Diego's Division of Dermatology, the scientists found that HSV-1 launches an infection by binding to receptors on the surface of skin cells. Ordinarily, if a cell recognizes the virus as an invader, an immune response is immediately triggered, which includes a group of proteins called scavenger receptors that help identify and remove harmful viruses.

But sometimes the process goes awry. While studying HSV-1 and scavenger receptors in cultured human skin cells, Gallo and colleagues in the Atopic Dermatitis Research Network, funded by the National Institute of Allergy and Infectious Diseases, discovered that the virus strongly interacts with a particular receptor called a macrophage receptor with collagenous structure or MARCO, which it uses to gain entry into cells.

In tests comparing mice expressing normal levels of MARCO with mice genetically engineered to lack the receptor, the scientists found that MARCO enhanced the virus' ability to infect cells. Mice lacking the receptor suffered dramatically smaller skin lesions than normal mice with normal levels of MARCO. In a different experiment, the application of chemicals that prevented the virus from binding to MARCO resulted in much-smaller lesions on normal mice.

Gallo said the findings were surprising. "We would have predicted that MARCO would help resist infection," he said, noting it was the first evidence that a scavenger receptor, part of the body's defense system against viral invaders, might actually aid and abet HSV-1 infection.

The research suggests that development of new therapies preventing HSV-1-MARCO interaction may measurably reduce the degree and risk of serious HSV-1-related complications in atopic dermatitis patients and others. The scientists plan to follow up with testing in atopic dermatitis patients, and investigate whether other skin viruses also use the same infection pathway.

Co-authors are Daniel T. MacLeod and Kenshi Yamasaki, Division of Dermatology, Department of Medicine, UCSD; Teruaki Nakatsuji, Division of Dermatology, Department of Medicine, UCSD and Veterans Affairs San Diego Health Care System; and Lester Kobzik, Department of Environmental Health, Harvard School of Public Health

Funding for this research came, in part, from The Atopic Dermatitis Research Network (grant HHSN272201000020C) and National Institutes of Health grants T32 AR062496, R01 A1052453, R01 Ai0833358 and R01 ES110008.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>