Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut microbes could determine the severity of melamine-induced kidney disease

14.02.2013
Microbes present in the gut can affect the severity of kidney disease brought on by melamine poisoning, according to an international study led by Professor Wei Jia at the University of North Carolina in collaboration with the research group of Professor Jeremy Nicholson at Imperial College London.

In 2008, nearly 300,000 Chinese children were hospitalised with kidney disease brought on by supplies of powdered milk deliberately contaminated with melamine to boost the apparent protein content. Although melamine was known to combine with uric acid in the children's bodies to produce harmful kidney stones, the details of the reaction and the role of specific gut microbes were not well understood.

By studying how melamine contributes to the development of kidney stones in rats, the research groups have shown experimentally that gut microbes may be central to understanding melamine-induced kidney failure in humans.

The formation of kidney stones occurs when melamine reacts with cyanuric acid in the kidney to form crystals which cannot be dissolved in the bloodstream. According to the paper, published today in Science Translational Medicine, certain species of gut microbes are responsible for converting melamine into the toxic cyanuric acid, thereby accelerating the rate at which kidney stones are formed.

Tests on rats showed that the presence of microbes of the Klebsiella family tended to facilitate the process of melamine conversion, potentially making them key players in the formation of kidney stones. This study suggests that toxicity in this case is linked to the make-up of gut microbes in the poisoned organism.

"The metabolic activities of gut microbes strongly influence human health in profound ways and have been linked to the development of multiple medical problems ranging from autoimmune diseases, obesity, diabetes, and cardiovascular disease," said Professor Nicholson, head of the Department of Surgery and Cancer at Imperial. "The specific implication of this research is that the expression of the kidney disease in the Chinese contaminated milk scandal is likely to have been mediated by gut bacteria in affected children. The more general implication is that gut microbial status affects the outcome to exposures to environmental and food contaminants."

For further information please contact:

Gilead Amit
Covering Research Media Officer
Imperial College London
Out of hours duty press officer: 44-0-7803-886-248
Notes to editors:
1. "Melamine-Induced Renal Toxicity Is Mediated by the Gut Microbiota" Science Translational Medicine journal, published in print Wednesday 13 February 2013

Xiaojiao Zheng, Aihua Zhao, Guoxiang Xie, Yi Chi, Linjing Zhao, Houkai Li, Congrong Wang, Yuqian Bao, Weiping Jia, Mike Luther, Mingming Su, Jeremy K. Nicholson* and Wei Jia *Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London SW7 2AZ, UK.

A copy of the published paper: http://stm.sciencemag.org/content/5/172/172ra22.full.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges. In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Gilead Amit | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>