Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic vulnerability of lung cancer to lay foundation for new drug options

04.04.2013
Physician-researchers at UT Southwestern Medical Center have identified a vulnerability of certain lung-cancer cells – a specific genetic weakness that can be exploited for new therapies.

Although researchers have long known that mutant versions of the KRAS gene drive tumor formation and are key to cell survival in non-small cell lung cancer, the blocking of activated KRAS has proven difficult. For years, investigations have explored stopping lung cancer at this junction, which also would have an impact on many other cancers. KRAS mutations, for instance, account for as much as 50 percent of all colon cancers.

"There is an urgent need to identify 'downstream' pathways that are required to sustain and grow non-small cell lung cancer (NSCLC)," said Dr. Pier Paolo Scaglioni, assistant professor of internal medicine and a member of the Harold C. Simmons Cancer Center. "As we focus on the right pathways, we stand a much better chance of chemically blocking them and stopping tumor growth."

The team's findings are published in the April edition of Cancer Discovery, a journal of the American Association for Cancer Research. Dr. Scaglioni served as senior author and Dr. Georgia Konstantinidou, a postdoctoral researcher, was first author.

To identify vulnerabilities in KRAS-mutant tumors, Dr. Scaglioni's group used a mouse model of high-grade lung adenocarcinoma induced by a recombinant transgene that allows activation of mutant KRAS in the respiratory epithelium. This strategy allows the generation of high-grade lung cancers that closely resemble human tumors.

Compared with control tumors, the investigators found that the protein RHOA was specifically required for the survival and growth of high-grade tumors via activation of a focal adhesion kinase (FAK). Consistent with a critical role for this pathway in NSCLC, activation of RHOA and FAK was observed in human NSCLC samples and human lung-cancer cells were found to be highly sensitive to pharmacologic inhibitors of FAK.

FAK is a protein that helps cells stick to each other and their surroundings, and also aids in determining how rigid and mobile the cell's structure is. When FAK is blocked in breast cancer, the cancer cells become less metastastic due to decreased mobility.

Dr. Scaglioni and his team are now poised to study in clinical trials the pharmacologic blockade of FAK using inhibitor compounds currently under commercial development.

"Our findings provide the rationale for the rapid implementation of genotype-specific targeted therapies utilizing FAK inhibitors in cancer patients," Dr. Konstantinidou said.

Other researchers at UT Southwestern involved in the paper include Dr. Rolf A. Brekken, associate professor of surgery and pharmacology; Dr. Michael T. Dellinger, postdoctoral researcher II in the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research; and Rachel E. Ramirez, research assistant I in obstetrics/gynecology. Scientists from the University of Texas MD Anderson Cancer Center in Houston and Memorial Sloan-Kettering Cancer Center in New York also contributed to the investigation.

The research was conducted with support from the American Cancer Society, the Ryan Gibson Foundation, and the Department of Defense.

Please visit the Harold C. Simmons Cancer Center to learn more about oncology at UT Southwestern, including highly individualized treatments for cancer at the region's only National Cancer Institute-designated center.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 100,000 hospitalized patients and oversee more than 2.1 million outpatient visits a year.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html.

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews.

Alex Lyda | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>