Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic protection against arsenic

16.10.2012
Evolution has not only controlled human development over millions of years, it also has an impact on modern man.

This is one of the conclusions of a study of Argentinian villagers in the Andes, where the water contains high levels of arsenic. A gene variant that produces efficient and less toxic metabolism of arsenic in the body was much more common among the villagers than among other indigenous groups in South or Central America.

The study was a collaborative effort by Karin Broberg from Lund University and Carina Schlebusch and Mattias Jakobsson from Uppsala University in Sweden.

“We know that many bacteria and plants have genes that increase resistance to arsenic, a highly toxic substance that is found in soil and water in many parts of the world. There has been no previous research on whether the people in these regions also have protective genes against arsenic”, says Karin Broberg.

High levels of arsenic in drinking water are linked to a range of health problems. Increased child morbidity and an increased risk of cancer, heart disease and diabetes are some examples.

In many places this is a relatively new problem, for example in Bangladesh, where it arose in connection with new drilled wells. In the Andes, however, people have lived with drinking water containing arsenic for thousands of years, owing partly to high levels of the toxic substance in the bedrock and partly to consequences of mining since the pre-colonial era. Even 7 000-year-old mummies from northern Chile have been found to have high levels of arsenic in their hair and internal organs.
Occupational and environmental medicine researcher Karin Broberg has been studying the health impact of metals in the Andes for a long time.

“We found that the people up in the mountains in Argentina had unusually efficient metabolism of arsenic. This meant that the toxin left the body rapidly and less toxically instead of accumulating in tissue”, she explains.

In the newly published study, the researchers have studied the genes of Atacameño Indian villagers in San Antonio de los Cobres in Argentina, who have lived in the area for multiple generations. Their genes were compared with those of various indigenous and Mestizo groups from Peru and indigenous groups from Colombia and Mexico. Over two thirds of the Argentinian villagers were found to carry a gene variant that accelerates the metabolism of arsenic, compared with half of the Peruvian villagers and only 14 per cent of the other indigenous groups.

There has been very little previous research on human evolutionary adaptation to environmental toxins. However, it is known that many of the genes that control the metabolism of poisons in the body have a large number of variants that occur with varying prevalence around the world. There may therefore be different adaptations among different populations, depending on what toxins they are exposed to in the local environment, according to Karin Broberg.

The study is a collaboration between researchers in Sweden, the US and Peru. They now hope to continue mapping genes that increase human tolerance of toxic substances.

They study has been published in the journal Environmental Health Perspectives, see http://ehp.niehs.nih.gov (enter Karin Broberg in the search field).

Karin Broberg can be contacted on tel. +46 46 17 38 19 and +46 737 82 37 50 or by email, Karin.Broberg_Palmgren@med.lu.se

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se
http://ehp.niehs.nih.gov/2012/10/possible-positive-selection-for-an-arsenic-protective-haplotype-in-humans/
http://www.lu.se/images/Nyhetsbilder/Karin.Broberg.jpg

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>