Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic protection against arsenic

16.10.2012
Evolution has not only controlled human development over millions of years, it also has an impact on modern man.

This is one of the conclusions of a study of Argentinian villagers in the Andes, where the water contains high levels of arsenic. A gene variant that produces efficient and less toxic metabolism of arsenic in the body was much more common among the villagers than among other indigenous groups in South or Central America.

The study was a collaborative effort by Karin Broberg from Lund University and Carina Schlebusch and Mattias Jakobsson from Uppsala University in Sweden.

“We know that many bacteria and plants have genes that increase resistance to arsenic, a highly toxic substance that is found in soil and water in many parts of the world. There has been no previous research on whether the people in these regions also have protective genes against arsenic”, says Karin Broberg.

High levels of arsenic in drinking water are linked to a range of health problems. Increased child morbidity and an increased risk of cancer, heart disease and diabetes are some examples.

In many places this is a relatively new problem, for example in Bangladesh, where it arose in connection with new drilled wells. In the Andes, however, people have lived with drinking water containing arsenic for thousands of years, owing partly to high levels of the toxic substance in the bedrock and partly to consequences of mining since the pre-colonial era. Even 7 000-year-old mummies from northern Chile have been found to have high levels of arsenic in their hair and internal organs.
Occupational and environmental medicine researcher Karin Broberg has been studying the health impact of metals in the Andes for a long time.

“We found that the people up in the mountains in Argentina had unusually efficient metabolism of arsenic. This meant that the toxin left the body rapidly and less toxically instead of accumulating in tissue”, she explains.

In the newly published study, the researchers have studied the genes of Atacameño Indian villagers in San Antonio de los Cobres in Argentina, who have lived in the area for multiple generations. Their genes were compared with those of various indigenous and Mestizo groups from Peru and indigenous groups from Colombia and Mexico. Over two thirds of the Argentinian villagers were found to carry a gene variant that accelerates the metabolism of arsenic, compared with half of the Peruvian villagers and only 14 per cent of the other indigenous groups.

There has been very little previous research on human evolutionary adaptation to environmental toxins. However, it is known that many of the genes that control the metabolism of poisons in the body have a large number of variants that occur with varying prevalence around the world. There may therefore be different adaptations among different populations, depending on what toxins they are exposed to in the local environment, according to Karin Broberg.

The study is a collaboration between researchers in Sweden, the US and Peru. They now hope to continue mapping genes that increase human tolerance of toxic substances.

They study has been published in the journal Environmental Health Perspectives, see http://ehp.niehs.nih.gov (enter Karin Broberg in the search field).

Karin Broberg can be contacted on tel. +46 46 17 38 19 and +46 737 82 37 50 or by email, Karin.Broberg_Palmgren@med.lu.se

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se
http://ehp.niehs.nih.gov/2012/10/possible-positive-selection-for-an-arsenic-protective-haplotype-in-humans/
http://www.lu.se/images/Nyhetsbilder/Karin.Broberg.jpg

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>