Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forced exercise may still protect against anxiety and stress, says CU-Boulder study

26.04.2013
Being forced to exercise may still help reduce anxiety and depression just as exercising voluntarily does, according to a new study by researchers at the University of Colorado Boulder.

Past studies have shown that people who exercise are more protected against stress-related disorders. And scientists know that the perception of control can benefit a person's mental health. But it has been an open question whether a person who feels forced to exercise, eliminating the perception of control, would still reap the anxiety-fighting benefits of the exercise.

People who may feel forced to exercise could include high school, college and professional athletes, members of the military or those who have been prescribed an exercise regimen by their doctors, said Benjamin Greenwood, an assistant research professor in CU-Boulder's Department of Integrative Physiology.

"If exercise is forced, will it still produce mental health benefits?" Greenwood asked. "It's obvious that forced exercise will still produce peripheral physiological benefits. But will it produce benefits to anxiety and depression?"

To seek an answer to the question Greenwood and his colleagues, including Monika Fleshner, a professor in the same department, designed a lab experiment using rats. During a six-week period, some rats remained sedentary, while others exercised by running on a wheel.

The rats that exercised were divided into two groups that ran a roughly equal amount of time. One group ran whenever it chose to, while the other group ran on mechanized wheels that rotated according to a predetermined schedule. For the study, the motorized wheels turned on at speeds and for periods of time that mimicked the average pattern of exercise chosen by the rats that voluntarily exercised.

After six weeks, the rats were exposed to a laboratory stressor before testing their anxiety levels the following day. The anxiety was quantified by measuring how long the rats froze, a phenomenon similar to a deer in the headlights, when they were put in an environment they had been conditioned to fear. The longer the freezing time, the greater the residual anxiety from being stressed the previous day. For comparison, some rats were also tested for anxiety without being stressed the day before.

"Regardless of whether the rats chose to run or were forced to run they were protected against stress and anxiety," said Greenwood, lead author of the study appearing in the European Journal of Neuroscience in February. The sedentary rats froze for longer periods of time than any of the active rats.

"The implications are that humans who perceive exercise as being forced — perhaps including those who feel like they have to exercise for health reasons — are maybe still going to get the benefits in terms of reducing anxiety and depression," he said.

Other CU-Boulder authors include Katie Spence, Danielle Crevling, Peter Clark and Wendy Craig. All the authors are members of Monika Fleshner's Stress Physiology Laboratory in the Department of Integrative Physiology.

The research was funded by the National Institutes of Mental Health and the Defense Advanced Research Projects Agency.

Benjamin Greenwood | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>