Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forced exercise may still protect against anxiety and stress, says CU-Boulder study

26.04.2013
Being forced to exercise may still help reduce anxiety and depression just as exercising voluntarily does, according to a new study by researchers at the University of Colorado Boulder.

Past studies have shown that people who exercise are more protected against stress-related disorders. And scientists know that the perception of control can benefit a person's mental health. But it has been an open question whether a person who feels forced to exercise, eliminating the perception of control, would still reap the anxiety-fighting benefits of the exercise.

People who may feel forced to exercise could include high school, college and professional athletes, members of the military or those who have been prescribed an exercise regimen by their doctors, said Benjamin Greenwood, an assistant research professor in CU-Boulder's Department of Integrative Physiology.

"If exercise is forced, will it still produce mental health benefits?" Greenwood asked. "It's obvious that forced exercise will still produce peripheral physiological benefits. But will it produce benefits to anxiety and depression?"

To seek an answer to the question Greenwood and his colleagues, including Monika Fleshner, a professor in the same department, designed a lab experiment using rats. During a six-week period, some rats remained sedentary, while others exercised by running on a wheel.

The rats that exercised were divided into two groups that ran a roughly equal amount of time. One group ran whenever it chose to, while the other group ran on mechanized wheels that rotated according to a predetermined schedule. For the study, the motorized wheels turned on at speeds and for periods of time that mimicked the average pattern of exercise chosen by the rats that voluntarily exercised.

After six weeks, the rats were exposed to a laboratory stressor before testing their anxiety levels the following day. The anxiety was quantified by measuring how long the rats froze, a phenomenon similar to a deer in the headlights, when they were put in an environment they had been conditioned to fear. The longer the freezing time, the greater the residual anxiety from being stressed the previous day. For comparison, some rats were also tested for anxiety without being stressed the day before.

"Regardless of whether the rats chose to run or were forced to run they were protected against stress and anxiety," said Greenwood, lead author of the study appearing in the European Journal of Neuroscience in February. The sedentary rats froze for longer periods of time than any of the active rats.

"The implications are that humans who perceive exercise as being forced — perhaps including those who feel like they have to exercise for health reasons — are maybe still going to get the benefits in terms of reducing anxiety and depression," he said.

Other CU-Boulder authors include Katie Spence, Danielle Crevling, Peter Clark and Wendy Craig. All the authors are members of Monika Fleshner's Stress Physiology Laboratory in the Department of Integrative Physiology.

The research was funded by the National Institutes of Mental Health and the Defense Advanced Research Projects Agency.

Benjamin Greenwood | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>