Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exercise Minimizes Weight Regain by Burning Fat Before Carbs

Exercise helps prevent weight regain after dieting by reducing appetite and by burning fat before burning carbohydrates, according to a new study with rats. Burning fat first and storing carbohydrates for use later in the day slows weight regain and may minimize overeating by signaling a feeling of fullness to the brain.

The University of Colorado Denver study also found that exercise prevents the increase in the number of fat cells that occurs during weight regain, challenging the conventional wisdom that the number of fat cells is set and cannot be altered by dietary or lifestyle changes.

These coordinated physiological changes in the brain and the body lower the ‘defended’ weight, that is, the weight that our physiology drives us to achieve, and suggest that the effects of exercise on these physiological processes may make it easier to stay on a diet.

The study is “Regular exercise attenuates the metabolic drive to regain weight after long term weight loss.” Paul S. MacLean, Janine A. Higgins, Holly R. Wyatt, Edward L. Melanson, Ginger C. Johnson, Matthew R. Jackman, Erin D. Giles, Ian E. Brown and James O. Hill, all of the University of Colorado Denver, conducted the study. The American Physiological Society published the research in the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology.

How exercise works
Weight gain is, on the surface, remarkably simple, occurring when the calories consumed exceeds the calories expended. On closer examination, the process is remarkably complex. Laboratory, animals eat according to physiological signals that may suppress appetite or arouse the desire to eat. These signals are relatively weak in humans, as their intake is largely influenced by psychological, cognitive and lifestyle factors. After dieting, however, the physiological signals emerge to play a more substantial role in controlling intake. Being persistently hungry after losing weight with restricted diets is a big part of the weight regain problem. Most people are unable to ignore this physiological cue and are pushed by their biology to overeat and regain the weight they worked so hard to lose.

Some people are successful at keeping the weight off, and those tracked by The National Weight Control Registry share a number of common characteristics, including a program of regular exercise. The aim of this investigation was to uncover how exercise affects the body’s physiology to minimize weight regain.

The researchers used obesity-prone rats. For the first 16 weeks, the rats ate a high-fat diet, as much as they wanted, and remained sedentary. They were then placed on a diet. For the following two weeks, the animals ate a low-fat and low-calorie diet, losing about 14% of their body weight. The rats maintained the weight loss by dieting for eight more weeks. Half the rats exercised regularly on a treadmill during this period while the other half remained sedentary.

In the final 8-weeks, the relapse phase of the study, the rats stopped dieting and ate as much low-fat food as they wanted. The rats in the exercise group continued to exercise and the sedentary rats remained sedentary.

Compared to the sedentary rats, the exercisers:

• regained less weight during the relapse period
• developed a lower ‘defended’ body weight
• burned more fat early in the day, and more carbohydrates later in the day
• accumulated fewer fat cells and less abdominal fat during relapse
• reduced the drive to overeat
• enhanced the ability to balance energy intake with energy expended
During feeding, the sedentary group preferentially burned carbohydrates while sending fat from the diet to fat tissue. This preferential fuel use stores more calories because it requires less energy to store fat than to store carbohydrates. In addition, burning away the body’s carbohydrates may contribute to the persistent feeling of hunger and large appetite of the sedentary animals.

Exercise blunted this fuel preference, favoring the burning of fat for energy needs and saving ingested carbohydrates so that they could be used later in the day. Taken together, the exercise led to a much lower appetite and fewer calories ending up in fat tissue.

The researchers also found that exercise prevented the increase in the number of fat cells observed with weight regain in sedentary rats. In sedentary rats, a population of very small, presumably new, fat cells appears early in the relapse process. Small, new fat cells would not only accelerate the process of regain, but also increase fat storage capacity in the abdomen. It would also explain why sedentary rats overshoot their previous weight when they relapse.

Conventional wisdom holds that the number of fat cells is determined by genetics, rather than being regulated by diet or lifestyle. Because this effect of exercise is a novel finding, the team will do further research to demonstrate that exercise is, indeed, preventing the formation of new fat cells early in relapse and not simply altering the size of pre-existing fat cells.

Editor’s Notes: To arrange an interview with Dr. MacLean, please contact Christine Guilfoy (301) 634-7253 or at

To read the full study click here or cut or paste the following link into your web browser:

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Christine Guilfoy | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>