Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EU project looking at late side-effects of the treatment of childhood cancer

06.11.2013
Coordination by the Mainz University Medical Center / European Union provides funding of approximately EUR 6 million

Is it possible to predict the likelihood of subsequent complications following cancer treatment on the basis of genetic tests? This is the main question to be addressed by an EU-wide research project that is being coordinated by the German Childhood Cancer Registry at the Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI) of the Mainz University Medical Center.

The project will focus on late effects of the childhood tumor therapy, such as fertility problems and hearing loss. In addition, the researchers aim to determine the overall effect of these complications on the health-related quality of life of former patients. The European Union will be providing funding of some EUR 6 million to support the research project entitled PanCareLIFE.

The prognosis for survival of patients who develop cancer as children has significantly improved in the last decades. Depending on the diagnosis, some 80 percent of those afflicted now experience remission. However, the improvement in the rate of long-term survival has also resulted in an increase of the rate of those likely to suffer late complications. These complications can take various forms, such as damage to organs (e.g., heart, kidneys, ear), impairment of the quality of life (due to growth problems, physical disabilities, intellectual impairment, or difficulty with social integration), and an increased risk of second cancer.

Researchers from eight European countries, i.e., the Czech Republic, Denmark, France, Germany, Ireland, Italy, the Netherlands, and Switzerland, will be participating in the PanCareLIFE project. The data from a total of about 12,000 former patients from all participating countries will be analyzed. The researchers involved hope to be able to use this data to identify genetic and non-genetic risk factors that may be associated with fertility problems and deafness. They thus intend to study genetic material in order to determine which genetic variants may be associated with the above-mentioned complications. The data collected during the PanCareLIFE project will be collated centrally at the German Childhood Cancer Registry of IMBEI at the Medical Center of Johannes Gutenberg University Mainz (JGU).

"It is a great honor for us that we here in Mainz at IMBEI have been assigned the coordination of this project and the responsibilities for collation of this valuable European data and the main statistical analysis," said PD Dr. Peter Kaatsch, Project Coordinator and Head of the German Childhood Cancer Registry. Professor Maria Blettner, Director of IMBEI, added: "The fact that we have improved the rate of long-term cancer survival is a great achievement. At the same time, this necessarily means that we need to focus on the possible late complications. PanCareLIFE can make a significant contribution here to the improvement of the long-term quality of life of survivors."

The Chief Scientific Officer of the Mainz University Medical Center, Professor Ulrich Förstermann, emphasized that this project again demonstrates the significance assigned to epidemiological research at Mainz. "The University Medical Center with all its institutions is a key player in analyzing the emergence of diseases with their temporal and regional variations in a population, in exploring their development mechanisms, finding causes, preventing late complications, and initiating the corresponding preventative measures."

The German Childhood Cancer Registry has documented all cases of cancer occurring in children and adolescents in Germany since 1980. Some 50,000 cases have been recorded to date and more than 30,000 former patients are in long-term follow-up. The German Childhood Cancer Registry has been asked to act as coordinator for PanCareLIFE, a multinational research project initiated by the European Commission, due to its extensive experience with childhood cancer registration, familiarity with research into the causes and late complications of childhood cancer, and its international links with other institutions.

Contact
PD Dr. Peter Kaatsch, Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), Mainz University Medical Center
phone +49 6131 17–3111 / fax +49 6131 17-4462
e-mail: peter.kaatsch@unimedizin-mainz.de
Press contact
Oliver Kreft, Press and Public Relations, Mainz University Medical Center
phone +49 6131 17-7428 / fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de
About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de/index.php?L=1

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>