Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced white blood cells heal mice with MS-like disease

03.06.2013
Genetically engineered immune cells seem to promote healing in mice infected with a neurological disease similar to multiple sclerosis (MS), cleaning up lesions and allowing the mice to regain use of their legs and tails.

The new finding, by a team of University of Wisconsin School of Medicine and Public Health researchers, suggests that immune cells could be engineered to create a new type of treatment for people with MS.

Currently, there are few good medications for MS, an autoimmune inflammatory disease that affects some 400,000 people in the United States, and none that reverse progress of the disease.

Dr. Michael Carrithers, assistant professor of neurology, led a team that created a specially designed macrophage – an immune cell whose name means "big eater." Macrophages rush to the site of an injury or infection, to destroy bacteria and viruses and clear away damaged tissue. The research team added a human gene to the mouse immune cell, creating a macrophage that expressed a sodium channel called NaVI.5, which seems to enhance the cell's immune response.

But because macrophages can also be part of the autoimmune response that damages the protective covering (myelin) of the nerves in people with MS, scientists weren't sure whether the NaV1.5 macrophages would help or make the disease worse.

When the mice developed experimental autoimmune encephalomyelitis – the mouse version of MS -- they found that the NaV1.5 macrophages sought out the lesions caused by the disease and promoted recovery.

"This finding was unexpected because we weren't sure how much damage they would do, versus how much cleaning up they would do,'' Carrithers says. "Some people thought the mice would get more ill, but we found that it protected them and they either had no disease or a very mild case."

In follow-up experiments, regular mice that do not express the human gene were treated with the NaV1.5 macrophages after the onset of symptoms, which include weakness of the back and front limbs. The majority of these mice developed complete paralysis of their hindlimbs. Almost all of the mice that were treated with the Na1.5 macrophages regained the ability to walk. Mice treated with placebo solution or regular mouse macrophages that did not have NaV1.5 did not show any recovery or became more ill. In treated mice, the research team also found the NaV1.5 macrophages at the site of the lesions, and found smaller lesions and less damaged tissue in the treated mice.

Because the NaV1.5 variation is present in human immune cells, Carrithers says, "The questions are, 'Why are these repair mechanisms deficient in patients with MS and what can we do to enhance them?' '' He says the long-range goal is to develop the NaV1.5 enhanced macrophages as a treatment for people with MS.

Carrithers is a neurologist who treats patients with multiple sclerosis at University of Wisconsin Hospital and Clinics and the William S. Middleton Veterans' Hospital in Madison. His research team includes Kusha Rahgozar, Erik Wright and Lisette Carrithers. The research was supported by a prior National MS Society research grant and a current VA Merit Award from the Biomedical Laboratory Research and Development service of the Department of Veterans Affairs (7784115).

The study is being published in the June issue of the Journal of Neuropathology and Experimental Neurology

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>