Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elderly with depression, mild cognitive impairment more vulnerable to accelerated brain aging

08.08.2014

People who develop depression and mild cognitive impairment (MCI) after age 65 are more likely to have biological and brain imaging markers that reflect a greater vulnerability for accelerated brain aging, according to a study conducted by researchers at the University of Pittsburgh School of Medicine. The findings were published online in Molecular Psychiatry.

Older adults with major depression have double the risk of developing dementia in the future compared with those who have never had the mood disorder, said senior investigator Meryl A. Butters, Ph.D., associate professor of psychiatry, Pitt School of Medicine.

But there's no clear explanation for why a treatable mood disorder like depression leads to increased risk for dementia, a progressive brain disease. Until now, most studies have examined only one or two biomarkers to get at this question.

"Our study represents a significant advance because it provides a more comprehensive and integrated view of the neurobiological changes related to mild cognitive impairment in late-life," she said. "Better understanding of the neurobiology of cognitive impairment in depression can provide new targets for developing more specific treatments, not only for its prevention and treatment, but also for its down-stream negative outcomes, including the development of dementia and related disorders."

The team collected blood samples from 80 older adults in remission after being treated for major depression, 36 of whom had MCI and 44 with normal cognitive function. Their blood was tested for 242 proteins involved in biologic pathways associated with cancer, cardiovascular diseases, and metabolic disorders as well as psychiatric and neurodegenerative disorders.

The researchers also performed PET and MRI brain scans on the participants to look for indicators of cerebrovascular disease, brain atrophy or shrinkage, and beta-amyloid, which is the protein that makes up the brain plaques associated with Alzheimer's disease.

The MCI group was more likely to have differences in the biologic activity of 24 proteins that are involved in the regulation of immune and inflammatory pathways, intracellular signaling, cell survival, and protein and lipid balance.

Brain scans revealed a greater propensity for cerebrovascular disease – for example, small strokes – in the MCI group, but there was no difference in the amount of beta-amyloid deposition.

"If you take these results altogether, they suggest that people with depression and cognitive impairment may be more vulnerable to accelerated brain aging, which in turn puts them at risk for developing dementia," Dr. Butters said. "Ultimately, if we can understand what happens in the brain when people are depressed and suffer cognitive impairment, we can then develop strategies to slow or perhaps stop the impairment from progressing to dementia."

Next steps include assessing the protein panel in older people with normal cognitive function who have not experienced depression.

###

Co-authors of the study include Etienne Sibille, Ph.D., Ying Ding, Ph.D., George Tseng, Ph.D., Howard Aizenstein, M.D., Ph.D., Frances Lotrich, M.D., Ph.D., James T. Becker, Ph.D., Oscar L. Lopez, M.D., Michael T. Lotze M.D., William E. Klunk M.D., Ph.D., and Charles F. Reynolds, M.D., all of the University of Pittsburgh; and the first author is Breno S. Diniz, M.D., Ph.D., now of the Federal University of Minas Gerais, Brazil.

The project was funded by National Institutes of Health grants MH080240, MH90333 (ACISR for Late Life Depression Prevention and Treatment), AG05133 (Alzheimer Disease Research Center), MH09456; CA047904-22S1, CA160417, CA181450; the John A. Hartford Foundation Center of Excellence in Geriatric Psychiatry; and the Brazilian Intramural Research Program.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu. http://www.upmc.com/media

Gloria Kreps | Eurek Alert!

Further reports about: Elderly Health MCI Medicine School blood cognitive dementia disorders mood pathways risk scans

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>