Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficacy of potential therapy for autoimmune disorder of muscle weakness

08.10.2014

Nearly 60,000 Americans suffer from myasthenia gravis (MG), a non-inherited autoimmune form of muscle weakness. The disease has no cure, and the primary treatments are nonspecific immunosuppressants and inhibitors of the enzyme cholinesterase.

Now, a pair of researchers from the Perelman School of Medicine at the University of Pennsylvania have developed a fast-acting "vaccine" that can reverse the course of the disease in rats, and, they hope, in humans. Jon Lindstrom, PhD, a Trustee Professor in the department of Neuroscience led the study, published in the most recent issue of the Journal of Immunology, with senior research investigator Jie Luo, PhD.

Acetylcholine Receptor

Myasthenia gravis is caused by an autoimmune response to the acetylcholine receptor (pictured here), a muscle protein that translates nervous system signals into muscle contractions.

Credit: Drawing courtesy of Jon Lindstrom, PhD, Perelman School of Medicine, University of Pennsylvania

MG is caused by an autoimmune response to the acetylcholine receptor (AChR), a muscle protein that translates nervous system signals into muscle contractions. Autoantibodies target the part of these receptors found on the outer cell surface of muscle, leading to weakness.

Researchers can induce MG in rats by injecting the AChR protein, which produces an animal disease model called experimental autoimmune myasthenia gravis (EAMG). In this study, Lindstrom and Luo found that injecting rats with the part of the AChR found on the inside of the cell protects those animals from EAMG and reverses the course of the disease if administered after the EAMG has already been induced.

"We have an antigen-specific immunosuppressive therapy that works on the animal model and should work on human MG," says Lindstrom, adding that such therapies are "rarer than hens' teeth."

A vaccine dose of 1 mg per week for six weeks, the team found, was sufficient to block development of chronic EAMG in rats. But significantly, the vaccine also worked after induction of chronic EAMG, and could block re-induction of disease months later, as well. The vaccine appears to work by preventing synthesis of pathological antibodies to the extracellular surface of the AChR protein.

Although called a "vaccine," Lindstrom's therapeutic is not like a vaccine for influenza or measles. In those cases, the idea is to raise immunity to disease antigens that can then attack the pathogen should it infect the body in the future. In the case of MG, the vaccine targets immune cells that recognize and target a self protein – the acetylcholine receptor, which helps transmit neural signals from cell to cell – and marks them for death.

"We are trying to modulate a deviant immune response," Lindstrom explains.

The trick here is that the vaccine is made not from the portion of the AChR protein that the immune system normally would see – that part that is exposed on the outer surface of cells. Instead, it is built using the protein's cytoplasmic, or inner, cell regions. This formulation induces a robust, antigen-specific suppression of the immune response without also inducing MG itself. This may involve inhibition of cells involved in making pathological antibodies and regulating that response, but the exact mechanisms have not yet been determined.

Lindstrom's lab first described the vaccine itself in a 2010 publication in the Annals of Neurology. But this earlier work didn't try to block or treat chronic disease, and injected the vaccine without the use of a chemical cocktail that amplifies the resulting immune response, called an adjuvant. The present study suggests that pairing the vaccine with an adjuvant is safe – that is, it doesn't cause MG – and effective.

Now, says Lindstrom, the goal is to test this approach in animals with EAMG and MG using other human adjuvants and then move to human clinical trials.

###

The research was funded by the Muscular Dystrophy Association.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.

Karen Kreeger | Eurek Alert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>