Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficacy of potential therapy for autoimmune disorder of muscle weakness

08.10.2014

Nearly 60,000 Americans suffer from myasthenia gravis (MG), a non-inherited autoimmune form of muscle weakness. The disease has no cure, and the primary treatments are nonspecific immunosuppressants and inhibitors of the enzyme cholinesterase.

Now, a pair of researchers from the Perelman School of Medicine at the University of Pennsylvania have developed a fast-acting "vaccine" that can reverse the course of the disease in rats, and, they hope, in humans. Jon Lindstrom, PhD, a Trustee Professor in the department of Neuroscience led the study, published in the most recent issue of the Journal of Immunology, with senior research investigator Jie Luo, PhD.

Acetylcholine Receptor

Myasthenia gravis is caused by an autoimmune response to the acetylcholine receptor (pictured here), a muscle protein that translates nervous system signals into muscle contractions.

Credit: Drawing courtesy of Jon Lindstrom, PhD, Perelman School of Medicine, University of Pennsylvania

MG is caused by an autoimmune response to the acetylcholine receptor (AChR), a muscle protein that translates nervous system signals into muscle contractions. Autoantibodies target the part of these receptors found on the outer cell surface of muscle, leading to weakness.

Researchers can induce MG in rats by injecting the AChR protein, which produces an animal disease model called experimental autoimmune myasthenia gravis (EAMG). In this study, Lindstrom and Luo found that injecting rats with the part of the AChR found on the inside of the cell protects those animals from EAMG and reverses the course of the disease if administered after the EAMG has already been induced.

"We have an antigen-specific immunosuppressive therapy that works on the animal model and should work on human MG," says Lindstrom, adding that such therapies are "rarer than hens' teeth."

A vaccine dose of 1 mg per week for six weeks, the team found, was sufficient to block development of chronic EAMG in rats. But significantly, the vaccine also worked after induction of chronic EAMG, and could block re-induction of disease months later, as well. The vaccine appears to work by preventing synthesis of pathological antibodies to the extracellular surface of the AChR protein.

Although called a "vaccine," Lindstrom's therapeutic is not like a vaccine for influenza or measles. In those cases, the idea is to raise immunity to disease antigens that can then attack the pathogen should it infect the body in the future. In the case of MG, the vaccine targets immune cells that recognize and target a self protein – the acetylcholine receptor, which helps transmit neural signals from cell to cell – and marks them for death.

"We are trying to modulate a deviant immune response," Lindstrom explains.

The trick here is that the vaccine is made not from the portion of the AChR protein that the immune system normally would see – that part that is exposed on the outer surface of cells. Instead, it is built using the protein's cytoplasmic, or inner, cell regions. This formulation induces a robust, antigen-specific suppression of the immune response without also inducing MG itself. This may involve inhibition of cells involved in making pathological antibodies and regulating that response, but the exact mechanisms have not yet been determined.

Lindstrom's lab first described the vaccine itself in a 2010 publication in the Annals of Neurology. But this earlier work didn't try to block or treat chronic disease, and injected the vaccine without the use of a chemical cocktail that amplifies the resulting immune response, called an adjuvant. The present study suggests that pairing the vaccine with an adjuvant is safe – that is, it doesn't cause MG – and effective.

Now, says Lindstrom, the goal is to test this approach in animals with EAMG and MG using other human adjuvants and then move to human clinical trials.

###

The research was funded by the Muscular Dystrophy Association.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.

Karen Kreeger | Eurek Alert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>