Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug inhibits infection with cause of watery diarrhea

08.07.2015

Understanding mechanism of Cryptosporidium infection will support drug development

Researchers at the University of Tokyo and Obihiro University of Agriculture and Veterinary Medicine have demonstrated that heparin, a type of sulfated polysaccharide, inhibits infection with Cryptosporidium parvum, a protozoan that causes diarrhea in humans and other mammals. This will facilitate the development of anti-cryptosporidial agents.


Life cycle of Cryptosporidium and inhibitory efficacy of heparin. (Upper) Life cycle of Cryptosporidium. (Bottom) Inhibitory efficacy of heparin on Cryptosporidium infection is concentration dependent (increases with concentration). © 2015 Kentaro Kato.

Cryptosporidium is zoonotic pathogen (a pathogen that causes disease in animals and which can also infect humans), which infects a wide range of mammals including humans and cattle causing severe diarrhea.

The pathogen can cause outbreaks in humans through tap water because of its resistance to chlorination, and economic loss for farmers by infecting and causing severe diarrhea in young calves.

Therefore, the livestock sector requires effective measures against the pathogen and investigation of the mechanism of infection and development of new medicines are urgently needed.

In this study, Associate Professor Kentaro Kato and his group at the University of Tokyo Graduate School of Agricultural and Life Sciences and Obihiro University of Agriculture and Veterinary Medicine investigated whether sulfated polysaccharides inhibit infection by the Cryptosporidium parasite using cells derived from human colon tissue.

The group showed for the first time that heparin inhibits the infection of Cryptosporidium, and that the greater the concentration of heparin the greater the inhibitory effect.

In addition, the group investigated the mechanism of infection by the Cryptosporidium parasite, and elucidated that heparan sulfate, a sulfated polysaccharide found on the surface of mammalian cells, is involved in Cryptosporidium infection.

“This study will further promote our understanding of the interaction of heparin sulfate with Cryptosporidium and the mechanism of Cryptosporidium infection, and will facilitate the development of anti-cryptosporidial agents,” says Associate Professor Kato.

Paper

Atsuko Inomata, Fumi Murakoshi, Akiko Ishiwa, Ryo Takano, Hitoshi Takemae, Tatsuki Sugi, Frances Cagayat Recuenco, Taisuke Horimoto, and Kentaro Kato, "Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion", Scientific Reports Online Edition: 2015/7/1 (Japan time), doi: 10.1038/srep11599.


Associated links
U Tokyo Research article

Euan McKay | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>