Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One disease, two mechanisms

Prostate cancer in younger patients is triggered by a different mechanism than in older men

In a nutshell:

- Depending on the age of the patient, prostate cancer can be caused by two different mechanisms

- The mechanism leading to prostate cancer in younger patients is triggered by androgen hormones and induces important rearrangements in the genome of the tumour

- Understanding how prostate cancer is triggered in younger men could have widespread clinical consequences for diagnosis and treatment

While prostate cancer is the most common cancer in elderly Western men it also, but more rarely, strikes patients aged between 35 and 50. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with several other research teams in Germany*, have discovered that such early-onset prostate cancers are triggered by a different mechanism from that which causes the disease at a later age. Their findings are published today in Cancer Cell, and might have important consequences for the diagnosis and treatment of prostate cancer in younger patients.

The researchers compared the genomes of 11 early-onset tumours with 7 late-onset tumours and observed marked differences at the molecular level. The genomes of early-onset prostate tumours undergo a relatively small number of changes compared to tumours that develop in older patients. However, this small number of events leads to crucial exchanges of DNA between chromosomes, causing genes that are normally independent to become tightly linked (known as ’fusion genes‘). Many of the genes affected by these rearrangements are usually activated by androgen hormones, such as testosterone. Through these rearrangements they become connected to cancer genes, resulting in fusion genes that can be activated by androgen hormones, so that otherwise inactive genes with the potential to cause cancer are now switched on.

“Prostate cancer in young patients appears to be specifically triggered by androgens and to involve genetic alterations that distinguish this cancer from prostate tumours in older patients,” explains Jan Korbel, who led the study at EMBL. “We also measured the levels of androgen receptors in a large cohort of patients from Hamburg, and found data consistent with our initial genomic analysis.”

Younger patients with prostate cancer tend to have higher levels of androgen hormone receptors than older patients with the same disease. This could be a natural effect, because the level of these hormones decreases in men older than 50. But it supports the researchers’ conclusion that androgens might trigger the mechanism leading to prostate cancer in younger patients, and not in older ones.

Further research is needed to provide the scientific and medical community with more details, particularly regarding the medical impact of testosterone levels in men. However, in the future these findings may have widespread clinical consequences. “We hope that our findings on the cause of the disease will promote the development of new strategies to diagnose, prevent, and even individually treat this cancer,” explains Thorsten Schlomm from the Martini Klinik at the University Medical Center Hamburg-Eppendorf (UKE).

* This study is a part of the International Cancer Genome Consortium (ICGC) project. In addition to EMBL, it involves the Martini-Klinik and the University Medical Centre Hamburg-Eppendorf, both in Hamburg, the German Cancer Research Center (DKFZ) in Heidelberg, and the Max-Planck Institute for Molecular Genetics in Berlin, all in Germany.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Isabelle Kling
Communications officer
European Molecular Biology Laboratory - EMBL
Heidelberg, Germany
T: +49 6221 387 8355

Isabelle Kling | EMBL Research News
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>