Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One disease, two mechanisms

12.02.2013
Prostate cancer in younger patients is triggered by a different mechanism than in older men

In a nutshell:

- Depending on the age of the patient, prostate cancer can be caused by two different mechanisms

- The mechanism leading to prostate cancer in younger patients is triggered by androgen hormones and induces important rearrangements in the genome of the tumour

- Understanding how prostate cancer is triggered in younger men could have widespread clinical consequences for diagnosis and treatment

While prostate cancer is the most common cancer in elderly Western men it also, but more rarely, strikes patients aged between 35 and 50. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with several other research teams in Germany*, have discovered that such early-onset prostate cancers are triggered by a different mechanism from that which causes the disease at a later age. Their findings are published today in Cancer Cell, and might have important consequences for the diagnosis and treatment of prostate cancer in younger patients.

The researchers compared the genomes of 11 early-onset tumours with 7 late-onset tumours and observed marked differences at the molecular level. The genomes of early-onset prostate tumours undergo a relatively small number of changes compared to tumours that develop in older patients. However, this small number of events leads to crucial exchanges of DNA between chromosomes, causing genes that are normally independent to become tightly linked (known as ’fusion genes‘). Many of the genes affected by these rearrangements are usually activated by androgen hormones, such as testosterone. Through these rearrangements they become connected to cancer genes, resulting in fusion genes that can be activated by androgen hormones, so that otherwise inactive genes with the potential to cause cancer are now switched on.

“Prostate cancer in young patients appears to be specifically triggered by androgens and to involve genetic alterations that distinguish this cancer from prostate tumours in older patients,” explains Jan Korbel, who led the study at EMBL. “We also measured the levels of androgen receptors in a large cohort of patients from Hamburg, and found data consistent with our initial genomic analysis.”

Younger patients with prostate cancer tend to have higher levels of androgen hormone receptors than older patients with the same disease. This could be a natural effect, because the level of these hormones decreases in men older than 50. But it supports the researchers’ conclusion that androgens might trigger the mechanism leading to prostate cancer in younger patients, and not in older ones.

Further research is needed to provide the scientific and medical community with more details, particularly regarding the medical impact of testosterone levels in men. However, in the future these findings may have widespread clinical consequences. “We hope that our findings on the cause of the disease will promote the development of new strategies to diagnose, prevent, and even individually treat this cancer,” explains Thorsten Schlomm from the Martini Klinik at the University Medical Center Hamburg-Eppendorf (UKE).

* This study is a part of the International Cancer Genome Consortium (ICGC) project. In addition to EMBL, it involves the Martini-Klinik and the University Medical Centre Hamburg-Eppendorf, both in Hamburg, the German Cancer Research Center (DKFZ) in Heidelberg, and the Max-Planck Institute for Molecular Genetics in Berlin, all in Germany.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Isabelle Kling
Communications officer
European Molecular Biology Laboratory - EMBL
Heidelberg, Germany
T: +49 6221 387 8355
isabelle.kling@embl.de

Isabelle Kling | EMBL Research News
Further information:
http://www.embl.org
http://www.commhere.eu/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>