Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may help prevent chemotherapy-induced anemia

06.05.2013
Cancer chemotherapy can cause peripheral neuropathy—nerve damage often resulting in pain and muscle weakness in the arms and legs.

Now, researchers at Albert Einstein College of Medicine of Yeshiva University have discovered that chemo also induces an insidious type of nerve damage inside bone marrow that can cause delays in recovery after bone marrow transplantation.

The findings, made in mice and published online today in Nature Medicine, suggest that combining chemotherapy with nerve-protecting agents may prevent long-term bone marrow injury that causes anemia and may improve the success of bone marrow transplants.

Constantly regenerating and maturing, the hematopoietic (blood-producing) stem cells in our bone marrow produce billions of red blood cells (RBC) every day. Cancer chemotherapy is notorious for injuring the bone marrow, leading to anemia, or low RBC counts. But just how chemotherapy harms the bone marrow has not been clear.

Anemia can lead to numerous health problems including chronic fatigue, tachycardia (abnormally rapid heartbeat), cognitive impairment, shortness of breath, depression and dizziness. In addition, studies have shown that cancer patients who develop anemia have a 65 percent increased risk of death compared with cancer patients without anemia.

In an earlier study, senior author Paul Frenette, M.D., professor of medicine and of cell biology and director of the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research at Einstein, found that sympathetic nerves within bone marrow direct the movement of hematopoietic stem cells. (The body's sympathetic nervous system helps in controlling most internal organs—increasing heart rate and dilating the pupils of the eye, for example.)

"Since many chemotherapies used in cancer treatment are neurotoxic, we wondered whether they might also damage sympathetic nerves in bone marrow itself, impairing the ability of hematopoietic cells to regenerate and to manufacture RBCs," said Dr. Frenette. "This possibility hadn't been examined before."

Dr. Frenette and his colleagues treated mice with seven cycles of cisplatin, a common chemotherapy drug with known neurotoxic effects. The cisplatin caused peripheral neuropathy problems similar to those seen in cancer patients. The mice were then given fresh bone marrow transplants to see how well their marrow would regenerate. Despite receiving fresh stem cells, the cisplatin-treated mice had delayed recovery of blood counts compared to controls—suggesting that the prior cisplatin treatments had affected the bone marrow and prevented hematopoietic stem cells from regenerating. By contrast, mice treated with carboplatin—a non-neurotoxic chemotherapy—recovered their ability to produce blood after bone marrow transplantation.

To confirm that healthy sympathetic nerves in the bone marrow are needed to regenerate hematopoietic stem cells and produce RBCs, the researchers selectively damaged sympathetic nerves in bone marrow using chemicals or genetic engineering. In both cases, the mice with the damaged sympathetic nerves were less able than control mice to recover after bone marrow transplant.

The researchers found that injury to these nerves could be reduced by giving mice nerve-protecting agents along with chemotherapy. Mice treated with seven cycles of cisplatin along with 4-methylcatechol (an experimental drug that reportedly protects sympathetic nerves) showed improved response to bone marrow transplantation, compared to controls.

Dr. Frenette and his colleagues now plan to look for compounds that can protect sympathetic nerves in the bone marrow without reducing the effectiveness of cancer chemotherapies.

The title of the paper is "Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration." The lead author of the paper is Daniel Lucas, Ph.D., a postdoctoral reseacher in Dr. Frenette's laboratory. Other Einstein contributors are Christoph Scheiermann, Ph.D., and Yuya Kunisaki, M.D., Ph.D. Additional co-authors are Andrew Chow, M.D./Ph.D. student, Icahn School of Medicine at Mount Sinai, New York, NY; Ingmar Bruns, M.D., Ph.D., Einstein and Heinrich Heine University, Dusseldorf, Germany; Colleen Barrick, National Cancer Institute, Frederick, MD; and Lino Tessarollo, Ph.D., National Cancer Institute.

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK056638) and the National Heart, Lung, and Blood Institute (HL069438), both parts of the National Institutes of Health.

A patent application on this technology has been filed, which is currently available for licensing and further commercialization.

The authors declare no competing financial interests.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2012-2013 academic year, Einstein is home to 742 M.D. students, 245 Ph.D. students, 116 students in the combined M.D./Ph.D. program, and 360 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2012, Einstein received over $160 million in awards from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center –Einstein's founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>