Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points to new approach to fight dengue virus

12.04.2013
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, and the findings represent a new approach for designing vaccines against the aggressive mosquito-borne pathogen.
The researchers found that the dengue virus particles swell slightly and take on a bumpy appearance when heated to human body temperature, exposing "epitopes," or regions where antibodies could attach to neutralize the virus.

The discovery is significant because it could help to explain why vaccines against dengue have been ineffective, said Michael G. Rossmann, Hanley Distinguished Professor of Biological Sciences at Purdue University.

Scientists have been designing vaccines targeting the virus's smooth appearance found at the cooler temperatures of mosquitoes and ticks.

"The bumpy form of the virus would be the form present in humans, so the optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed in that form," Rossmann said.

The findings are detailed in a research paper appearing online this week in Proceedings of the National Academy of Sciences.

The researchers used a technique called cryo-electron microscopy to see the three-dimensional structure of the virus at temperatures ranging from 28-37 degrees Celsius (37 degrees Celsius is 98.6 degrees Fahrenheit, or human body temperature). Findings showed that the virus has a smooth appearance while at the cooler temperatures found in mosquito or tick vectors, but then it morphs into the bumpy form at warmer temperatures before fusing to the host cell and delivering its genetic material.

"These findings were a big surprise," said Richard J. Kuhn, professor and head of Purdue's Department of Biological Sciences and director of the Bindley Bioscience Center. "No one expected to see the virus change its appearance as it moves from the mosquito to humans."

The paper was co-authored by postdoctoral researcher Xinzheng Zhang; lab manager Ju Sheng; postdoctoral researcher Pavel Plevka; Kuhn; Michael S. Diamond, a researcher at Washington University School of Medicine; and Rossmann.

Findings also could apply to related infections in the flavivirus family, which includes a number of dangerous insect-borne diseases such as West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis.

Dengue (pronounced DEN-gç) is a leading cause of serious illness and death among children in some Asian and Latin American countries, causing 50 million to 100 million infections per year. Globally, dengue has grown dramatically in recent decades, placing about half the world's population at risk of infection.

The researchers determined that the bumpy form of the virus is more efficient at infecting mammalian cells. The team was able to measure the virus's infectivity using a laboratory procedure where cells are infected in a culture dish. The bumpy shape is an intermediate stage before the virus becomes unstable, releasing its genetic material. The virus is made of subunit molecules that separate when the virus particle expands into its bumpy form, revealing exposed membrane surfaces between the subunits where antibodies might bind.

The work is funded by the National Institutes of Health and Purdue through university support for a structural biology electron microscope facility.

Writer: Emil Venere, 765-494-3470, venere@purdue.edu
Sources: Michael Rossmann, 765-494-4911, mr@purdue.edu

Richard J. Kuhn, 765-494-4407, kuhnr@purdue.edu

Note to Journalists: A copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>