Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points to new approach to fight dengue virus

12.04.2013
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, and the findings represent a new approach for designing vaccines against the aggressive mosquito-borne pathogen.
The researchers found that the dengue virus particles swell slightly and take on a bumpy appearance when heated to human body temperature, exposing "epitopes," or regions where antibodies could attach to neutralize the virus.

The discovery is significant because it could help to explain why vaccines against dengue have been ineffective, said Michael G. Rossmann, Hanley Distinguished Professor of Biological Sciences at Purdue University.

Scientists have been designing vaccines targeting the virus's smooth appearance found at the cooler temperatures of mosquitoes and ticks.

"The bumpy form of the virus would be the form present in humans, so the optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed in that form," Rossmann said.

The findings are detailed in a research paper appearing online this week in Proceedings of the National Academy of Sciences.

The researchers used a technique called cryo-electron microscopy to see the three-dimensional structure of the virus at temperatures ranging from 28-37 degrees Celsius (37 degrees Celsius is 98.6 degrees Fahrenheit, or human body temperature). Findings showed that the virus has a smooth appearance while at the cooler temperatures found in mosquito or tick vectors, but then it morphs into the bumpy form at warmer temperatures before fusing to the host cell and delivering its genetic material.

"These findings were a big surprise," said Richard J. Kuhn, professor and head of Purdue's Department of Biological Sciences and director of the Bindley Bioscience Center. "No one expected to see the virus change its appearance as it moves from the mosquito to humans."

The paper was co-authored by postdoctoral researcher Xinzheng Zhang; lab manager Ju Sheng; postdoctoral researcher Pavel Plevka; Kuhn; Michael S. Diamond, a researcher at Washington University School of Medicine; and Rossmann.

Findings also could apply to related infections in the flavivirus family, which includes a number of dangerous insect-borne diseases such as West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis.

Dengue (pronounced DEN-gç) is a leading cause of serious illness and death among children in some Asian and Latin American countries, causing 50 million to 100 million infections per year. Globally, dengue has grown dramatically in recent decades, placing about half the world's population at risk of infection.

The researchers determined that the bumpy form of the virus is more efficient at infecting mammalian cells. The team was able to measure the virus's infectivity using a laboratory procedure where cells are infected in a culture dish. The bumpy shape is an intermediate stage before the virus becomes unstable, releasing its genetic material. The virus is made of subunit molecules that separate when the virus particle expands into its bumpy form, revealing exposed membrane surfaces between the subunits where antibodies might bind.

The work is funded by the National Institutes of Health and Purdue through university support for a structural biology electron microscope facility.

Writer: Emil Venere, 765-494-3470, venere@purdue.edu
Sources: Michael Rossmann, 765-494-4911, mr@purdue.edu

Richard J. Kuhn, 765-494-4407, kuhnr@purdue.edu

Note to Journalists: A copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>