Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Derailing inner ear development

25.01.2010
A molecule that regulates expression of two growth factors is critical for inner ear development

During mammalian neural development, cells extend projections to target tissues from which they derive growth factors needed for survival. Initially, neurons of the inner ear require brain-derived neurotrophic factor (Bdnf) and neurotrophin 3 (Ntf3) from the otic placode, the sensory epithelium from which the cells are derived. Later, the cells express these growth factors themselves, which support the neurons that project to them.

Although this process is well known, the underlying molecular mechanisms have been unclear. Slitrk6, a transmembrane protein with structural similarities to the Slit family of axon guidance molecules and to the Ntrk neurotrophic factor receptors, is known to be expressed in the otic placode, and is therefore likely to play a role in inner ear development.

To investigate this, Kei-ichi Katayama of the RIKEN Brain Science Institute and his colleagues generated mice lacking the Slitrk6 gene. They found that the gross structure of the inner appeared normal1. However, they observed a significant reduction in the number of nerve fiber bundles projecting to the cochlea (Fig. 1). These defects were evident during late embryonic stages, and persisted throughout postnatal development. In the vestibular region, the defects were more severe, with nerve fibers bundles completely absent in this region in most mutant animals. In others, they were significantly reduced or had abnormal trajectories.

Next the researchers examined the spiral and vestibular ganglia, which contain neurons that project to the cochlea and vestibular region, respectively. Cell death was significantly higher in the mutants than in wild-type animals, so that the structures were up to 75% smaller than normal by the time of birth.

They also found that cultured sensory neurons from the spiral ganglion of mutant mice could grow projections towards sensory epithelial tissue from normal, but not mutant, mice. Further experiments revealed a mild but significant reduction in levels of Bdnf and Ntf-3 in the developing inner ear of the mutants. The phenotype of the mutant mice is therefore not due to axon guidance defects. Instead, these results suggest that Slitrk6 is part of a signaling pathway that increases expression of Bdnf and Ntf3 in the sensory epithelia.

“Behavioral tests show that the Slitrk6 knockout mice exhibit hearing loss,” says senior author Jun Aruga, “and we are now investigating whether they also have balance deficits. We believe our mutant mice are a good animal model of sensorineural deafness, which occurs because of improper cochlear development, following over-exposure to loud noises, and as a result of aging.”

The corresponding author for this highlight is based at the Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6158
http://www.researchsea.com

Further reports about: Brain Derailing Ntf3 RIKEN inner ear molecular mechanism mutant mice nerve fiber

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>