Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Derailing inner ear development

25.01.2010
A molecule that regulates expression of two growth factors is critical for inner ear development

During mammalian neural development, cells extend projections to target tissues from which they derive growth factors needed for survival. Initially, neurons of the inner ear require brain-derived neurotrophic factor (Bdnf) and neurotrophin 3 (Ntf3) from the otic placode, the sensory epithelium from which the cells are derived. Later, the cells express these growth factors themselves, which support the neurons that project to them.

Although this process is well known, the underlying molecular mechanisms have been unclear. Slitrk6, a transmembrane protein with structural similarities to the Slit family of axon guidance molecules and to the Ntrk neurotrophic factor receptors, is known to be expressed in the otic placode, and is therefore likely to play a role in inner ear development.

To investigate this, Kei-ichi Katayama of the RIKEN Brain Science Institute and his colleagues generated mice lacking the Slitrk6 gene. They found that the gross structure of the inner appeared normal1. However, they observed a significant reduction in the number of nerve fiber bundles projecting to the cochlea (Fig. 1). These defects were evident during late embryonic stages, and persisted throughout postnatal development. In the vestibular region, the defects were more severe, with nerve fibers bundles completely absent in this region in most mutant animals. In others, they were significantly reduced or had abnormal trajectories.

Next the researchers examined the spiral and vestibular ganglia, which contain neurons that project to the cochlea and vestibular region, respectively. Cell death was significantly higher in the mutants than in wild-type animals, so that the structures were up to 75% smaller than normal by the time of birth.

They also found that cultured sensory neurons from the spiral ganglion of mutant mice could grow projections towards sensory epithelial tissue from normal, but not mutant, mice. Further experiments revealed a mild but significant reduction in levels of Bdnf and Ntf-3 in the developing inner ear of the mutants. The phenotype of the mutant mice is therefore not due to axon guidance defects. Instead, these results suggest that Slitrk6 is part of a signaling pathway that increases expression of Bdnf and Ntf3 in the sensory epithelia.

“Behavioral tests show that the Slitrk6 knockout mice exhibit hearing loss,” says senior author Jun Aruga, “and we are now investigating whether they also have balance deficits. We believe our mutant mice are a good animal model of sensorineural deafness, which occurs because of improper cochlear development, following over-exposure to loud noises, and as a result of aging.”

The corresponding author for this highlight is based at the Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6158
http://www.researchsea.com

Further reports about: Brain Derailing Ntf3 RIKEN inner ear molecular mechanism mutant mice nerve fiber

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>