Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Compound Excels at Killing Persistent and Drug-Resistant Tuberculosis

An international team led by scientists at The Scripps Research Institute (TSRI), the Howard Hughes Medical Institute and Albert Einstein College of Medicine of Yeshiva University has identified a highly promising new anti-tuberculosis compound that attacks the tuberculosis (TB) bacterium in two different ways.
“These findings represent an effort to help solve one of the major global health crises of our time—the resurgence of TB and its dangerous drug-resistant strains,” said Peter G. Schultz, the Scripps Family Chair Professor of Chemistry at TSRI, who was senior author of the study with William R. Jacobs, Jr., member of the Howard Hughes Medical Institute and professor of microbiology & immunology and of genetics at Albert Einstein College of Medicine.

“In cell cultures and in mice, this compound showed powerful activity against ordinary active TB bacteria, non-replicating TB bacteria and even extensively drug-resistant TB strains,” said Feng Wang, a member of the Schultz lab at TSRI and first author of the study with Dhinakaran Sambandan of the Jacobs lab and Rajkumar Halder of the Schultz lab.

The paper appears in this week online ahead of print in an Early Edition of the Proceedings of the National Academy of Sciences.

Global Health Crisis

Although isoniazid and rifampin, the two front-line TB drugs, came into use in 1952 and 1967 respectively, new TB infections still occur at the rate of roughly one per second. At any moment about a third of the existing human population is infected—mostly with inactive, latent TB, although active TB still kills over one million people each year. Russia, Africa, China and Southeast Asia have been especially hard hit by the epidemic.

Increased urbanization, public health complacency and immunity-weakening HIV have been major enablers of TB’s spread in recent decades. But the bacterium that causes TB—Mycobacterium tuberculosis (Mtb)—also happens to be unusually well adapted for persisting in humans. Among other strategies, it frequently reverts to a dormant, non-replicating state and also creates attack-resistant cell colonies called biofilms, which contain a high proportion of non-replicating TB.

Compared to ordinary, fast-replicating TB, these other forms of TB are much less susceptible to existing drugs. Effective TB therapy thus requires months to years of regular dosing. But many patients quit before completing such long courses of treatment and end up incubating drug-resistant TB strains. Some strains are now “extensively drug-resistant” (XDR) and virtually untreatable—and usually fatal.

Killing the Persisters

“The big challenge here has been to find a drug that clears TB infection more quickly, which means it has to be effective against both replicating and non-replicating TB,” said Wang, now also a scientist at the California Institute for Biomedical Research (CALIBR), a non-profit organization founded by Schultz for the early-stage development of new medicines.

Most existing TB drugs work poorly against non-replicating TB, having been developed principally for their ability to kill actively replicating TB. Wang therefore set up a different kind of screening test—one to detect compounds that block TB’s persistence-related ability to form biofilms.

Because experiments with live TB require a special (level 3) biosafety facility, Wang used a related but non-disease-causing mycobacterium for his initial, high-throughput test. Screening a diverse library of 70,000 compounds, he quickly found one, dubbed TCA1, that stood out for its ability to inhibit mycobacterial biofilms.

Tests in Jacobs’s biosafety level 3-certified laboratory confirmed that TCA1 also has powerful activity against TB. “Surprisingly, it turned out to kill both non-replicating and replicating TB,” Wang said.

In cell culture tests, TCA1 on its own killed more than 99.9% of ordinary, actively replicating TB bacteria within three weeks, and in combination with isoniazid or rifampin, could kill 100% within that period. TCA1 also showed strong effectiveness against drug-resistant TB strains, removing all signs of one common strain within a week when combined with isoniazid. Against a highly fatal “super-bug” strain from South Africa, which resists all conventional TB drugs, the new compound on its own had a kill rate of more than 99.999% within three weeks.

As expected, TCA1 also showed potent effects against non-replicating TB. Tests in mice confirmed TCA1’s effectiveness and suggested that the combination of TCA1 and isoniazid could be more powerful than existing drug regimens. TCA1 showed no sign of toxicity or adverse side effects in cell culture and mouse experiments, and also showed almost no tendency to induce drug resistance in TB.

A Complex Mechanism

Working with the laboratories of Gurdyal S. Besra and Klaus Fütterer at the University of Birmingham, UK, Katarina Mikusova at Comenius University in Slovakia, and Kai Johnson at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, the team next did structural and biochemical analyses to determine how the new compound kills Mtb so efficiently.

The researchers found it works in an apparently unique way, largely by targeting two Mtb enzymes, one supporting TB replication and the other TB dormancy and persistence. “I don’t know of any other antibiotic that kills replicating bacteria through one pathway and non replicating bacteria through another, as this one does,” Wang said.

Now funded by the Global Alliance for TB Drug Development, Wang and his colleagues are working to devise improved variants of TCA1. “We already have analogs of TCA1 that are more potent and look very promising as TB drug candidates,” said Wang.

Assuming that preclinical tests are completed successfully, he added, the group hopes to find a pharmaceutical company partner to sponsor clinical trials in TB patients.

Contributors to the study, “Identification of a small molecule with activity against drug-resistant and persistent tuberculosis,” also included Jianing Wang, Insha Ahmad, Pengyu Yang and Yong Zhang of TSRI; Sarah M. Batt of University of Birmingham; Brian Weinrick, John Kim and Morad Hassani of Howard Hughes Medical Institute and Albert Einstein College of Medicine; Stanislav Huszar of Comenius University (Slovakia); Claudia Trefzer of EPFL; Zhenkun Ma, Takushi Kaneko and Khisi E. Mdluli of the Global Alliance for Tuberculosis Drug Development; Scott Franzblau of the University of Illinois; and Arnab K. Chatterjee of CALIBR.

The study was funded in part by the National Institutes of Health (grants AI26170 and A10-97548), the European Community’s Seventh Framework Programme (260872), the Global Alliance for TB Drug Development and the Albert Einstein College of Medicine Center for AIDS Research (AI0–51519).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136

Mika Ono | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>