Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commonly used cholesterol calculation underestimates heart disease danger for many

27.03.2013
Researchers suggest a different method of assessing risk after examining data on 1.3 million Americans

In what promises to be an eye-opener for many doctors and patients who routinely depend on cholesterol testing, a study led by researchers at the Johns Hopkins University School of Medicine found that the standard formula used for decades to calculate low-density lipoprotein (LDL) cholesterol levels is often inaccurate.

Of most concern, the researchers say, is their finding that the widely used formula underestimates LDL where accuracy matters most — in the range considered desirable for high-risk patients. Results of the study are published in an online article, ahead of print, in the Journal of the American College of Cardiology.

LDL is known as the "bad" cholesterol, with higher numbers signaling greater risk of plaque accumulating in heart arteries and having a heart attack. Since 1972, a formula called the Friedewald equation has been used to gauge LDL cholesterol. It is an estimate rather than an exact measurement. However, physicians use the number to assess their patients' risk and determine the best course of treatment.

"In our study, we compared samples assessed using the Friedewald equation with a direct calculation of the LDL cholesterol. We found that in nearly one out of four samples in the 'desirable' range for people with a higher heart disease risk, the Friedewald equation had it wrong," says Seth Martin, M.D., a clinical fellow at the Johns Hopkins Ciccarone Center for the Prevention of Heart Disease. "As a result, many patients may think they achieved their LDL cholesterol target when, in fact, they may need more aggressive treatment to reduce their heart disease risk," says Martin, who is the lead author of the study.

"In patients with heart disease, we want to get their LDL level below 70 — that is the typical goal," says Steven Jones, M.D., director of inpatient cardiology at The Johns Hopkins Hospital and a faculty member at the Ciccarone Center who is the senior author of the study. Jones says based on their findings, many people — especially those with high triglyceride levels — may have a false sense of assurance that their LDL cholesterol targets have been met.

For the study, the researchers obtained detailed lipid profiles of more than 1.3 million American adults — almost one out of every 180 adults in the United States — analyzed from 2009 to 2011. The LDL cholesterol and other blood lipid components in those samples had been directly measured with a technique known as ultracentrifugation. The researchers then evaluated those samples using the Friedewald equation that is used routinely in doctors' offices worldwide. When they compared the results, the differences came to light.

The lipid profiles were from a laboratory in Birmingham, Alabama, that provides a detailed analysis of samples sent in by doctors across the country. Except for the age of people on whom the samples were based (59 years on average) and the gender (52 percent of the samples were from women), the patients were not identifiable to the researchers. The researchers collaborated with the lab to develop the database they would need for the study.

The Friedewald equation was introduced into clinical practice by William Friedewald, M.D., to work around the significant time and expense of ultracentrifugation specifically to measure LDL cholesterol among about 400 people in families with genetic cholesterol abnormalities. The equation calculates LDL cholesterol with the following formula: total cholesterol minus HDL cholesterol minus triglycerides divided by five. The result is expressed in milligrams per deciliter.

"The database that we used was almost 3,000 times larger than the sample used to devise the Friedewald equation," Martin says.

As an alternative to Friedewald, Martin and his colleagues suggest that a more accurate way to assess risk for patients is to look at non-HDL, which is acquired by subtracting HDL from total cholesterol.

That non-HDL number, which includes LDL and other plaque-causing cholesterol particles called VLDL (very low density lipoprotein), would typically be about 30 points higher than when LDL cholesterol is calculated under the Friedewald method, and it could vary. But Martin says it would provide a better way to assess whether patients need to modify their medications or make more substantial lifestyle changes. "Most specialists in our field agree at this point that all of those non-HDL components are important," he says.

The non-HDL cholesterol level can be obtained easily using the same test widely available in doctors' offices today at no greater cost than the Friedewald calculation.

"Non-HDL cholesterol is a much better target for quantifying risk of plaques in coronary arteries," says Jones. "Looking at non-HDL cholesterol would make it simpler and more consistent, and would enable us to provide our patients with a better assessment," he says.

Jones, who originated the idea to use the large laboratory database to assess the Friedewald equation, says the information was provided by the lab at no cost. The lab, Atherotech, did not provide any funding for the research. The database used in the study is registered on the website http://www.clinicaltrials.gov and will be an important resource for ongoing scientific investigation.

In addition to Martin and Jones, other researchers on the study, "Friedewald Estimated versus Directly Measured Low-Density Lipoprotein Cholesterol and Treatment Implications" were:

Michael J. Blaha, Mohamed B. Elshazly, John W. McEvoy, Parag H. Joshi, Peter O. Kwiterovich, Andrew P. DeFilippis and Roger S. Blumenthal from Johns Hopkins; Eliot A. Brinton from the Utah Foundation for Biomedical Research and Utah Lipid Center; Peter P. Toth from the University of Illinois College of Medicine at Peoria; and Krishnaji R. Kulkarni and Patrick D. Mize from Atherotech Diagnostics Lab, in Birmingham, Ala.

COMMONLY USED CHOLESTEROL CALCULATION UNDERESTIMATES THE HEART DISEASE DANGER FOR MANY AT HIGH RISK, STUDY FINDS
Johns Hopkins Medicine
Media Relations and Public Affairs
Media Contacts:
Ellen Beth Levitt, 410-598-4711 (cell)
Helen Jones, hjones49@jhmi.edu, 410-502-9422

Ellen Beth Levitt | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>