Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian rhythms can be modified for potential treatment of disorders

23.01.2013
UCI-led studies identify cellular pathways involved in governing day-night pattern

UC Irvine-led studies have revealed the cellular mechanism by which circadian rhythms – also known as the body clock – modify energy metabolism and also have identified novel compounds that control this action.

The findings point to potential treatments for disorders triggered by circadian rhythm dysfunction, ranging from insomnia and obesity to diabetes and cancer.

UC Irvine’s Paolo Sassone-Corsi, one of the world’s leading researchers on the genetics of circadian rhythms, led the studies and worked with international groups of scientists. Their results are detailed in two companion pieces appearing this week in the early online edition of the Proceedings of the National Academy of Science.

“Circadian rhythms of 24 hours govern fundamental physiological functions in almost all organisms,” said Sassone-Corsi, the Donald Bren Professor of Biological Chemistry. “The circadian clocks are intrinsic time-tracking systems in our bodies that anticipate environmental changes and adapt themselves to the appropriate time of day. Disruption of these rhythms can profoundly influence human health.”

He added that up to 15 percent of people’s genes are regulated by the day-night pattern of circadian rhythms.

In one study, Sassone-Corsi and colleagues found that the biological clock controls enzymes localized in the mitochondrion, a cellular structure devoted to energy metabolism. This government occurs through acetylation of proteins, a process that operates as a switch to turn genes on and off in cells based upon the cells’ energy usage.

Some of the most important acetylation events in cells are dictated by an enzyme protein called SIRT1, which senses energy levels in the cell. Its activity is modulated by how many nutrients a cell is consuming. It also helps cells resist oxidative and radiation-induced stress. SIRT1 has been linked to the inflammatory response, diabetes and aging.

Sassone-Corsi first showed the circadian rhythm-metabolism link in 2008 and 2009, and in this study, he and his colleagues reveal the metabolic pathways through which SIRT1 works.

“When the balance between clock proteins is upset, normal cellular function can be disrupted,” said Sassone-Corsi, who also directs the Center for Epigenetics & Metabolism at UC Irvine.

In exploring how to regulate SIRT1 activity, Sassone-Corsi teamed with scientists from two research-and-development groups at GlaxoSmithKline – one in the United Kingdom and the other (called Sirtris) in the U.S. – to test proprietary small-molecule compounds that stimulate SIRT1.

In mouse studies, they were able to modulate the scale of circadian-driven gene function with the SIRT1-activating compounds, effectively governing the circadian cycle in a host of genes involved with the metabolic rate in cells. This research proves that small molecules can be used as a pharmacological strategy to control circadian disturbances and is a step toward the development of drugs that could target many conditions, including metabolic disorders, diabetes, cancer and aging.

Postdoctoral researchers Selma Masri and Kristin Eckel-Mahan, graduate student Vishal Patel and Chancellor’s Professor Pierre Baldi of UC Irvine, along with Shahaf Peleg, Ignasi Forne, Andreas Ladurner and Axel Imhof of Germany’s University of Munich, as well as Sassone-Corsi, contributed to the study titled “The Circadian acetylome reveals regulation of mitochondrial metabolic pathways.” The National Institutes of Health, the National Science Foundation, INSERM and Sirtris provided support.

In addition to Sassone-Corsi, postdoctoral researcher Marina Bellet and laboratory assistant Marlene Cervantes of UC Irvine; Mohamed Boudjelal, Emma Watts, Danuta Mossakowska and Kenneth Edwards of GlaxoSmithKline; Giuseppe Astarita of Georgetown University; and Christine Loh, James Ellis and George Vlasuk of Sirtris contributed to the study titled “Pharmacological modulation of circadian rhythms by high-affinity SIRT1 activators.” The National Institutes of Health and INSERM provided support.

About the University of California, Irvine: Founded in 1965, UC Irvine is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UC Irvine is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County’s second-largest employer, UC Irvine contributes an annual economic impact of $4.3 billion. For more UC Irvine news, visit news.uci.edu.

News Radio: UC Irvine maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UC Irvine faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>