Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic Myeloid Leukemia: Why the Disease Progresses and Becomes Resistant to Drug Treatment

08.10.2013
Cancer researchers of the Max Delbrück Center (MDC) Berlin-Buch, have identified a molecular mechanism of chronic myeloid leukemia (CML) that causes the disease to progress and become resistant to drug treatment.

In a current study, Dr. Marina Scheller (now at the University Hospital Hamburg-Eppendorf) and Professor Achim Leutz report that these two processes in CML – disease progression and drug resistance – are directly associated with each other due to crosstalk between two cellular signaling pathways.

Their findings may lead to new strategies for developing combination treatments to halt the progression of the disease (Journal of Experimental Medicine, doi:10.1084/jem.20130706)*.

In CML, the white blood cells (leukocytes) multiply in an uncontrolled fashion. This is caused by a mutation in the DNA of a single blood stem cell. In this mutation, parts of chromosome 9 fuse with parts of chromosome 22. This discovery was made in 1960 and termed the “Philadelphia chromosome” after the place it was discovered in the U.S. The product of the Philadelphia chromosome is the BCR-ABL oncogene. The protein product of this BCR-ABL gene is a tyrosine kinase which is responsible for the excessive proliferation of the white blood cells and for triggering the progression of chronic myeloid leukemia.

About 15 years ago a novel drug (imatinib) was developed that can block the tyrosine kinase produced by the Philadelphia chromosome. With imatinib, which has been used since 2001, the disease can be suppressed in the majority of CML patients.

However, with increasing duration of the disease, leukemia cells can develop resistance to imatinib, and the drug treatment can lose its effectiveness in some of the patients. A consequence is the emergence of the so-called blast crisis in which the blood of the patients is flooded with immature white blood cells (blasts). This phase is life-threatening because drug treatment is usually unsuccessful. Many CML experts attribute the disease progression to changes in the so-called “leukemia stem cells”. Thus, to prevent disease relapse, researchers across the globe are seeking to decipher the disease mechanisms and to develop new treatment options to eliminate these highly malignant leukemia stem cells.

Two signaling pathways under scrutiny
The molecular mechanism of CML progression identified by the MDC cancer researchers may aid in targeting these complications directly. In their study, Dr. Scheller and Professor Leutz focused on two signaling pathways. One is the Wnt signaling pathway with its main component, the protein beta-catenin. Of the two pathways, Wnt has thus far been more extensively studied. Normally, it is critical for the regulation of embryonic cells. If this signaling pathway is erroneously activated, various types of cancer can arise. Wnt signaling also plays an important role in triggering a blast crisis in CML.

The cancer researchers also focused on the interferon signaling pathway, and particularly on the function of the interferon regulatory factor 8 (Irf8). Irf8 protects against infection and regulates the production of a specific type of white blood cells, the granulocytes. It is also known that Irf8 counteracts the BCR-ABL oncoprotein and may suppress the development of cancer.

Direct association
For several years scientists have known that in patients with CML, the tumor suppressor function of Irf8 is weakened, whereas beta-catenin and the Wnt signaling are active. Until now it was unclear why this is so. The MDC researchers were now able to show that both phenomena are directly related to each other and that the BCR-ABL oncogene product of the Philadelphia chromosome takes over the control of both pathways.

“The Philadelphia chromosome inhibits the tumor suppressor Ifr8. The suppression of Irf8 activity promotes the development of CML. But the suppression of Irf8 alone is not sufficient to trigger a blast crisis,” said Professor Leutz. “What is crucial is the activity of the beta-catenin protein. Beta-catenin is the amplifier of the misguided cell differentiation and cell division. Beta-catenin activation speeds up the uncontrolled growth of the white blood cells and prevents their maturation into functional granulocytes,” he added.

“We were able to demonstrate that the loss of the interferon regulatory factor 8 (Irf8) and the subsequent activation of the Wnt/beta-catenin signaling pathway lead to an aggressive behavior of the CML stem cell with the BCR-ABL gene,” the authors of the study summarized their findings. According to the cancer researchers, precisely these two changes in the leukemia stem cell, suppression of Ifr8 and activation of beta-catenin, are part of the fact that imatinib and related drugs lose their effectiveness and help the leukemia stem cells to survive.

Professor Leutz also pointed out that before the drug imatinib existed, CML was also treated with interferon-alpha (IFN-alpha). Interferon-alpha induces an increase in Ifr8 proteins and simultaneously an improved response to imatinib. “When there is a relapse,” he said, “it may be advantageous to additionally increase Irf8 and to suppress the deregulated beta-catenin.” In the laboratory, Professor Leutz and his team have already achieved this objective in mice.

*Crosstalk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance
Marina Scheller*1,2, Jörg Schönheit1, Karin Zimmermann3, Ulf Leser3, Frank Rosenbauer4 and Achim Leutz*1,2
1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
2Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
3Institute for Computer Science, Humboldt-University of Berlin, Unter den Linden 6, 10099 Berlin, Germany.

4Institute of Molecular Tumor Biology - IMTB, Medical Faculty of the University of Muenster, Robert-Koch-Str. 43, 48149, Münster, Germany.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>