Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-lowering drugs may fight infectious disease

22.08.2017

Typhoid, Ebola use cholesterol to enter cells

That statin you've been taking to lower your risk of heart attack or stroke may one day pull double duty, providing protection against a whole host of infectious diseases, including typhoid fever, chlamydia, and malaria.


This digitally-colorized scanning electron microscopic (SEM) image shows Salmonella bacteria (red) invading an immune cell (yellow). Salmonella Typhi is the cause of typhoid fever. Researchers at Duke have discovered human genetic variation can impact both invasion of Salmonella into cells and typhoid fever risk in people.

Credit: CDC Public Health Image Library (NIAID)

Duke scientists have recently discovered that a gene variant that affects cholesterol levels could increase your risk of contracting typhoid fever. They also showed that a common cholesterol-lowering drug (ezetimibe or Zetia) could protect zebrafish against Salmonella Typhi, the culprit behind the nasty infection.

The findings, which appear the week of Aug. 21 in the Proceedings of the National Academy of Sciences, give insight into the mechanisms that govern human susceptibility to infectious disease. They also point to possible avenues to protect those who are most vulnerable to pathogens -- like the Salmonella bacteria -- that hijack cholesterol to infect host cells.

"This is just the first step," said Dennis C. Ko, M.D., Ph.D., senior author of the study and assistant professor of Molecular Genetics and Microbiology at Duke University School of Medicine. "We need to try this approach in different model organisms, such as mice, and likely with different pathogens, before we can consider taking this into the clinic. What's so exciting is that our study provides a blueprint for combining different techniques for understanding why some people are more susceptible to disease than others, and what can be done about it."

At the turn of the last century, the Irish immigrant Mary Mallon earned the name "Typhoid Mary" after she sickened more than 50 people in New York City. Mallon was apparently immune to the bacteria she carried, and many people who came into contact with the infamous cook never contracted the disease. What made them different?

Ko has long been intrigued by that question. However, trying to explain the differences between people when it comes to susceptibility to infectious disease can be tricky: you can't always know whether someone remains healthy because of their genetic constitution or lack of exposure, and even when everyone has been exposed, there are myriad other environmental factors that come into play.

So rather than let the real world run the experiment, Ko and his team used hundreds of cell lines from healthy human volunteers and exposed them to the exact same dose of Salmonella Typhi, which had been tagged with a green fluorescent marker. They then looked for genetic differences that distinguished cells that had higher rates of bacterial invasion from those that did not.

The researchers found that a single nucleotide of DNA in a gene called VAC14 was associated with the level of bacterial invasion in cells. When they knocked out the gene, the cells were invaded more readily and more of the cells glowed brightly with green bacteria. They also unexpectedly found that those more susceptible cells had higher levels of cholesterol, an essential component of cell membranes that Salmonella binds to invade host cells.

Ko wanted to see whether this genetic difference was relevant to the human population. By looking through the scientific literature, he decided to reach out to a researcher working in Vietnam, Dr. Sarah Dunstan, who had been studying typhoid fever in that country. When Dunstan tested DNA from subjects in a group of 1,000 Vietnamese, half of whom had typhoid fever and half of whom did not, she found that the VAC14 gene variant was associated with a moderately elevated risk of typhoid fever. The next step was investigating if there was a way to correct that susceptibility.

"Discovering the mechanism was important because plenty of people are on cholesterol-lowering drugs, especially statins for high cholesterol," said Ko. "We wondered if similar drugs could be given to reduce the risk of Salmonella infection."

Monica Alvarez, a graduate student in Ko's lab and lead author on the study, had some experience working with zebrafish, so they decided to start there. She added a cholesterol-lowering drug (ezetimibe or Zetia) to their water and then injected the fish with Salmonella Typhi. She found that the treated animals were more likely to clear the bacteria out of their system and survive.

Next, the researchers plan to perform similar experiments in mice and possibly try retrospective studies in humans already taking cholesterol-lowering drugs. They want to explore whether the approach can protect against other infectious diseases, and have already screened other pathogens known to rely on cholesterol at some point during infection.

"Our cell-based human genetic approach is a way for us to connect cell biology to human disease," said Ko. "By figuring out the mechanism, you can uncover possible therapeutic strategies that you wouldn't think about when just looking at the gene."

###

Funding for this research was provided by the Duke University Whitehead Scholarship, Butler Pioneer Award, National Institutes of Health (R01AI118903, K22AI093595, UL1TR001881, AI126693, HL069757, P50 GM115318), National Science Foundation pre-doctoral fellowship, Duke MGM SURE Fellowship, Australian National Health and Medical Research Council (Grant ID 1053407), Wellcome Trust (089276/Z/09/Z). DOI: 10.1073/pnas.1706070114

CITATION: "Human Genetic Variation in VAC14 Regulates Salmonella Invasion and Typhoid Fever Through Modulation of Cholesterol," Monica I. Alvarez, Luke C. Glover, Peter Luo, Liuyang Wang, Elizabeth Theusch, Stefan H. Oehlers, Eric M. Walton, Trinh Thi Bich Tram, Yu-Lin Kuang, Jerome I. Rotter, Colleen M. McClean, Nguyen Tran Chinh, Marisa W. Medina, David M. Tobin, Sarah J. Dunstan, and Dennis C. Ko. PNAS, Early Edition, Aug. 21, 2017.

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

New formulas for exploring the age structure of non-linear dynamical systems

23.01.2018 | Interdisciplinary Research

Drones learn to navigate autonomously by imitating cars and bicycles

23.01.2018 | Information Technology

Enhanced ball screw drive with increased lifetime through novel double nut design

23.01.2018 | Machine Engineering

VideoLinks Science & Research
Overview of more VideoLinks >>>