Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper, more effective treatment of type 1 Gaucher disease possible

20.10.2010
Researchers at Yale School of Medicine have found that new disease pathways involving more than one cell type leads to Type 1 Gaucher disease, a rare genetic disorder in which fatty substances called glycosphingolipids accumulate in cells, resulting in liver/spleen enlargement, osteoporosis, bone pain, and increased risk of cancer and Parkinson's disease.

The new findings could lead to less expensive and more effective ways to treat the disorder, which affects about 1 in 50,000 people in the general population. Those of Eastern and Central European (Ashkenazi) Jewish heritage are at highest risk for the disease, with 1 in 750 affected. The results are published in the October 18 issue of Proceedings of the National Academy of Sciences.

Treatment for Type 1 Gaucher disease—the type that does not cause a rare and fatal neurodegenerative childhood disease—involves expensive recombinant enzyme infusions every two weeks for life, which on average cost $200,000 per year. Gaucher disease symptoms are unpredictable, even among affected siblings. "In order to tailor treatment to individuals, we need an improved understanding of the disease mechanisms," said senior author of the study, Pramod Mistry, M.D., professor of pediatrics and internal medicine at Yale School of Medicine.

For almost 20 years, investigators around the world have tried and failed to develop mouse models of Type 1 Gaucher disease that replicate the human disease faithfully. Mistry and his team were able to develop a mouse model that replicates all of the features of the human disease.

It was previously thought that the disease affects only one cell type in the body called macrophages. "In our study we show that all cell types are involved and lipids that accumulate trigger abnormal signaling resulting in the malfunction of many cell types," said Mistry. "This helps explain aspects of the disease, such as osteoporosis, cancer risk, and risk of Parkinson's disease, all of which did not respond to macrophage-directed enzyme therapy. With this knowledge, we can look forward to developing treatments that are directed not only to macrophages, but to all cell types involved in the disease process."

Mistry and his team have just started enrolling patients in an international trial of a small molecule substrate inhibitor—in the form of a pill, which was developed by Genzyme Corporation. "Because it is a pill and will affect all cell types, we expect it to reverse all, not just part, of the disease. Also, it should be less expensive than enzyme treatment," he said.

The work of a researcher in this study was partially funded by the Yale Clinical and Translational Science Award (CTSA) grant from the National Center for Research Resources at the National Institutes of Health.

Other authors on the study include Jun Liu, Mei Yang, Timothy Nottoli, James McGrath, Dhanpat Jain, Kate Zhang, Joan Keutzer, Wei-Lein Chuang, Wajahat Z. Mehal, Hongyu Zhao, Aiping Lin, Shrikant Mane, Xuan Liu, Yuan Z. Peng, Jian H. Li, Manasi Argawal, Ling-Ling Zhu, Harry C. Blair, Lisa J. Robinson, Jameel Iqbal, Li Sun and Mone Zaidi.

Citation: PNAS doi/10.1073/pnas

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>