Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper, more effective treatment of type 1 Gaucher disease possible

20.10.2010
Researchers at Yale School of Medicine have found that new disease pathways involving more than one cell type leads to Type 1 Gaucher disease, a rare genetic disorder in which fatty substances called glycosphingolipids accumulate in cells, resulting in liver/spleen enlargement, osteoporosis, bone pain, and increased risk of cancer and Parkinson's disease.

The new findings could lead to less expensive and more effective ways to treat the disorder, which affects about 1 in 50,000 people in the general population. Those of Eastern and Central European (Ashkenazi) Jewish heritage are at highest risk for the disease, with 1 in 750 affected. The results are published in the October 18 issue of Proceedings of the National Academy of Sciences.

Treatment for Type 1 Gaucher disease—the type that does not cause a rare and fatal neurodegenerative childhood disease—involves expensive recombinant enzyme infusions every two weeks for life, which on average cost $200,000 per year. Gaucher disease symptoms are unpredictable, even among affected siblings. "In order to tailor treatment to individuals, we need an improved understanding of the disease mechanisms," said senior author of the study, Pramod Mistry, M.D., professor of pediatrics and internal medicine at Yale School of Medicine.

For almost 20 years, investigators around the world have tried and failed to develop mouse models of Type 1 Gaucher disease that replicate the human disease faithfully. Mistry and his team were able to develop a mouse model that replicates all of the features of the human disease.

It was previously thought that the disease affects only one cell type in the body called macrophages. "In our study we show that all cell types are involved and lipids that accumulate trigger abnormal signaling resulting in the malfunction of many cell types," said Mistry. "This helps explain aspects of the disease, such as osteoporosis, cancer risk, and risk of Parkinson's disease, all of which did not respond to macrophage-directed enzyme therapy. With this knowledge, we can look forward to developing treatments that are directed not only to macrophages, but to all cell types involved in the disease process."

Mistry and his team have just started enrolling patients in an international trial of a small molecule substrate inhibitor—in the form of a pill, which was developed by Genzyme Corporation. "Because it is a pill and will affect all cell types, we expect it to reverse all, not just part, of the disease. Also, it should be less expensive than enzyme treatment," he said.

The work of a researcher in this study was partially funded by the Yale Clinical and Translational Science Award (CTSA) grant from the National Center for Research Resources at the National Institutes of Health.

Other authors on the study include Jun Liu, Mei Yang, Timothy Nottoli, James McGrath, Dhanpat Jain, Kate Zhang, Joan Keutzer, Wei-Lein Chuang, Wajahat Z. Mehal, Hongyu Zhao, Aiping Lin, Shrikant Mane, Xuan Liu, Yuan Z. Peng, Jian H. Li, Manasi Argawal, Ling-Ling Zhu, Harry C. Blair, Lisa J. Robinson, Jameel Iqbal, Li Sun and Mone Zaidi.

Citation: PNAS doi/10.1073/pnas

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>