Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cheaper, more effective treatment of type 1 Gaucher disease possible

Researchers at Yale School of Medicine have found that new disease pathways involving more than one cell type leads to Type 1 Gaucher disease, a rare genetic disorder in which fatty substances called glycosphingolipids accumulate in cells, resulting in liver/spleen enlargement, osteoporosis, bone pain, and increased risk of cancer and Parkinson's disease.

The new findings could lead to less expensive and more effective ways to treat the disorder, which affects about 1 in 50,000 people in the general population. Those of Eastern and Central European (Ashkenazi) Jewish heritage are at highest risk for the disease, with 1 in 750 affected. The results are published in the October 18 issue of Proceedings of the National Academy of Sciences.

Treatment for Type 1 Gaucher disease—the type that does not cause a rare and fatal neurodegenerative childhood disease—involves expensive recombinant enzyme infusions every two weeks for life, which on average cost $200,000 per year. Gaucher disease symptoms are unpredictable, even among affected siblings. "In order to tailor treatment to individuals, we need an improved understanding of the disease mechanisms," said senior author of the study, Pramod Mistry, M.D., professor of pediatrics and internal medicine at Yale School of Medicine.

For almost 20 years, investigators around the world have tried and failed to develop mouse models of Type 1 Gaucher disease that replicate the human disease faithfully. Mistry and his team were able to develop a mouse model that replicates all of the features of the human disease.

It was previously thought that the disease affects only one cell type in the body called macrophages. "In our study we show that all cell types are involved and lipids that accumulate trigger abnormal signaling resulting in the malfunction of many cell types," said Mistry. "This helps explain aspects of the disease, such as osteoporosis, cancer risk, and risk of Parkinson's disease, all of which did not respond to macrophage-directed enzyme therapy. With this knowledge, we can look forward to developing treatments that are directed not only to macrophages, but to all cell types involved in the disease process."

Mistry and his team have just started enrolling patients in an international trial of a small molecule substrate inhibitor—in the form of a pill, which was developed by Genzyme Corporation. "Because it is a pill and will affect all cell types, we expect it to reverse all, not just part, of the disease. Also, it should be less expensive than enzyme treatment," he said.

The work of a researcher in this study was partially funded by the Yale Clinical and Translational Science Award (CTSA) grant from the National Center for Research Resources at the National Institutes of Health.

Other authors on the study include Jun Liu, Mei Yang, Timothy Nottoli, James McGrath, Dhanpat Jain, Kate Zhang, Joan Keutzer, Wei-Lein Chuang, Wajahat Z. Mehal, Hongyu Zhao, Aiping Lin, Shrikant Mane, Xuan Liu, Yuan Z. Peng, Jian H. Li, Manasi Argawal, Ling-Ling Zhu, Harry C. Blair, Lisa J. Robinson, Jameel Iqbal, Li Sun and Mone Zaidi.

Citation: PNAS doi/10.1073/pnas

Karen N. Peart | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>