Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheap, simple, noninvasive blood test may replace invasive diagnostic techniques in early pregnancy

29.06.2010
Researchers in The Netherlands believe they are on the verge of developing a simple, prenatal blood test that would be able to detect accurately chromosomal abnormalities in the developing foetus. At present, the only reliable way to do this is through amniocentesis or chorionic villus sampling, both of which are invasive and carry the risk of triggering a miscarriage.

Dr Suzanna Frints, a clinical geneticist at Maastricht University Medical Centre (Maastricht, The Netherlands), will tell the 26th annual meeting of the European Society of Human Reproduction and Embryology in Rome today (Tuesday), that she and her colleagues have been able to use molecular genetic probes to detect DNA belonging to the foetus in blood samples taken from pregnant women.

So far, they have been successful in identifying DNA from the Y chromosome, indicating that the foetus is a boy and therefore could be at risk of inheriting an X-linked disorder such as Duchenne's muscular dystrophy and haemophilia. [1]

The researchers believe the same method can be used to detect trisomy 21 (where an extra chromosome 21 causes Down's syndrome) and they are investigating this next, followed by trisomy 13 and 18 (responsible for causing Patau and Edward's syndromes respectively). [2]

Dr Frints and her colleagues are using the "Multiplex Ligation-dependent Probe Amplification" (MLPA), technique to detect foetal DNA that is present in the blood of women who have been pregnant for at least six to eight weeks. The MLPA test is part of an existing kit that is already used around the world to detect chromosomal abnormalities in invasively obtained amniotic fluid or chorionic villi samples from pregnant women. The kit is cheap and fast, delivering results within 24-62 hours, but, until now, it has only been used on samples taken during invasive procedures; it was not known whether it would work on cell free foetal DNA circulating in blood samples of pregnant women.

"It is inexpensive compared to the costs of invasive prenatal diagnosis, and could easily be implemented at low cost, between 30-150 Euros per kit per person, with a small apparatus in every hospital in the world. Blood samples can be taken during routine antenatal visits," said Dr Frints.

The study started in 2009 and is expected to continue to 2012 or longer. The researchers are recruiting women who are at high risk of an abnormal pregnancy and undergoing prenatal screening and invasive diagnostic procedures. To obtain MLPA proof of principle, they have recruited 14 women who had a pregnancy termination between 14-22 weeks gestation because of trisomy 13, 18 or 21 detected by invasive prenatal diagnosis (group A), four women who had non-invasive prenatal screening at 12-14 weeks gestation (group B), three women who had invasive prenatal diagnosis because of being at least 36 years old (group C), and nine non-pregnant control women who had had up to three children (group D). A total of 20, 715, 40 and 30 women are needed in each group respectively to complete the clinical trial to test the reliability of the MLPA technique.

"The MLPA test results obtained in 2009 were compared with the results of amniocentesis, chorionic villus sampling and pregnancy outcome. All but one sample correlated with the non-invasive MLPA test results, detecting foetal Y-chromosome sequences," said Dr Frints. "At the moment, the reliability of the test is about 80% due to false negative results, but we are working to improve the accuracy of the MLPA probe.

"Although we need to test and refine this MLPA technique further, our results so far are promising. This is innovative translational research and when we succeed in developing the MLPA procedure for use in maternal blood, we will be able to offer a safe, cheap, fast, reliable and accurate non-invasive test, which will be of immediate benefit to pregnant women, young and old, all over the world."

The researchers hope the test may be available in the clinic in two to five years' time.

[1] Most X-linked disorders are recessive. This means that females, who have two X chromosomes, need two copies of the affected gene to show the disorder, but because males have only one X chromosome, they show the disorder if they inherit one copy of the affected gene. Genetic abnormalities that are carried on the X chromosome include Duchenne's muscular dystrophy and haemophilia.

[2] Patau syndrome occurs in approximately one in 10,000 births and Edward's syndrome in approximately one in 6,000 births. They both cause numerous physical and mental abnormalities and most babies do not survive beyond infancy.

Emma Mason | EurekAlert!
Further information:
http://www.eshre.eu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>