Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai Regenerative Medicine Institute to Supply Stem Cells to Scientists Developing Treatments for Huntington’s Disease

08.12.2009
The Cedars-Sinai Regenerative Medicine Institute is to provide stem cells to a five-member National Institutes of Health consortium of researchers for development of potential therapies to treat Huntington’s disease.

As part of the $3.7 million grant from the National Institutes of Health, the Cedars-Sinai Regenerative Medicine Institute, directed by Clive Svendsen, Ph.D., will supply scientists at five leading laboratories, including Cedars-Sinai, with all the adult stem cells used in the study.

The consortium comprises a partnership of five leading Huntington's disease laboratories at Cedars-Sinai, the Gladstone Institutes, Johns Hopkins, Massachusetts General Hospital and the University of California at Irvine.

Svendsen, who recently joined the Cedars-Sinai Regenerative Medicine Institute, is a prominent stem cell scientist whose groundbreaking research focuses on both modeling and treating neurodegenerative disorders such as ALS (amyotrophic lateral sclerosis or Lou Gehrig’s disease) and Parkinson’s disease using a combination of stem cells and powerful growth factors. Prior to joining Cedars-Sinai, Svendsen served as director of the National Institutes of Health-funded Stem Cell Training Program at University of Wisconsin-Madison and as editor of the Encyclopedia of Stem Cell Research.

Huntington’s disease, also known as “Huntington's chorea" and "Woody Guthrie's disease," is an incurable neurodegenerative genetic disorder that affects muscle coordination and some cognitive functions, such as memory. It can also affect personality, causing increased confusion and anger. More than 100,000 Americans and 1 million worldwide have Huntington’s or are at risk of inheriting the disease from a parent. Any child of an affected parent has a 50 percent risk of inheriting the disease.

The goal of the project is to compare stem cells from patients with Huntington’s with stem cells from healthy patients in an effort to understand why brain cells die in Huntington’s patients, causing uncontrollable body movements and psychological changes. The project will use induced pluripotent stem cell technology, which enables specialized stem cells to be generated from adults’ skin samples.

“Regenerative medicine could enable us to untangle the mystery of this inexorably fatal disease,” Svendsen said. “One of the problems we have faced is that treatments that work in animals are ineffective in people. Now we have an opportunity to study this disease at a cellular level and collaborate with others dedicated to finding effective treatments.”

The Huntington’s project is the first endeavor announced since Svendsen was selected as director of the Cedars-Sinai Regenerative Medicine Institute, which brings together basic scientists with specialist clinicians, physician scientists and translational scientists across multiple medical specialties to translate fundamental stem cell studies to therapeutic regenerative medicine. The Institute will be housed in new state-of-the-art laboratories being constructed for stem cell and regenerative medicine research. At the heart of the Institute will be a specialized core facility for the production of pluripotent stem cells (capable of making all tissues in the human body) from adult human skin biopsies. Cells produced within the Institute would be used in a variety of Cedars-Sinai Medical research programs (initially focusing on understanding the causes of and finding treatments for diseases of the brain, heart, eye, liver, kidney, pancreas and skeletal structures, as well as cancer and metabolic disorders).

“This grant underscores the leading role Dr. Svendsen and his team is playing in the application of stem cell treatments that offer future hope to patients with degenerative diseases,” said Shlomo Melmed, M.D., Cedars-Sinai’s senior vice president of academic affairs and dean of the medical faculty.

Sally Stewart | prpacific.com
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>