Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai Regenerative Medicine Institute to Supply Stem Cells to Scientists Developing Treatments for Huntington’s Disease

08.12.2009
The Cedars-Sinai Regenerative Medicine Institute is to provide stem cells to a five-member National Institutes of Health consortium of researchers for development of potential therapies to treat Huntington’s disease.

As part of the $3.7 million grant from the National Institutes of Health, the Cedars-Sinai Regenerative Medicine Institute, directed by Clive Svendsen, Ph.D., will supply scientists at five leading laboratories, including Cedars-Sinai, with all the adult stem cells used in the study.

The consortium comprises a partnership of five leading Huntington's disease laboratories at Cedars-Sinai, the Gladstone Institutes, Johns Hopkins, Massachusetts General Hospital and the University of California at Irvine.

Svendsen, who recently joined the Cedars-Sinai Regenerative Medicine Institute, is a prominent stem cell scientist whose groundbreaking research focuses on both modeling and treating neurodegenerative disorders such as ALS (amyotrophic lateral sclerosis or Lou Gehrig’s disease) and Parkinson’s disease using a combination of stem cells and powerful growth factors. Prior to joining Cedars-Sinai, Svendsen served as director of the National Institutes of Health-funded Stem Cell Training Program at University of Wisconsin-Madison and as editor of the Encyclopedia of Stem Cell Research.

Huntington’s disease, also known as “Huntington's chorea" and "Woody Guthrie's disease," is an incurable neurodegenerative genetic disorder that affects muscle coordination and some cognitive functions, such as memory. It can also affect personality, causing increased confusion and anger. More than 100,000 Americans and 1 million worldwide have Huntington’s or are at risk of inheriting the disease from a parent. Any child of an affected parent has a 50 percent risk of inheriting the disease.

The goal of the project is to compare stem cells from patients with Huntington’s with stem cells from healthy patients in an effort to understand why brain cells die in Huntington’s patients, causing uncontrollable body movements and psychological changes. The project will use induced pluripotent stem cell technology, which enables specialized stem cells to be generated from adults’ skin samples.

“Regenerative medicine could enable us to untangle the mystery of this inexorably fatal disease,” Svendsen said. “One of the problems we have faced is that treatments that work in animals are ineffective in people. Now we have an opportunity to study this disease at a cellular level and collaborate with others dedicated to finding effective treatments.”

The Huntington’s project is the first endeavor announced since Svendsen was selected as director of the Cedars-Sinai Regenerative Medicine Institute, which brings together basic scientists with specialist clinicians, physician scientists and translational scientists across multiple medical specialties to translate fundamental stem cell studies to therapeutic regenerative medicine. The Institute will be housed in new state-of-the-art laboratories being constructed for stem cell and regenerative medicine research. At the heart of the Institute will be a specialized core facility for the production of pluripotent stem cells (capable of making all tissues in the human body) from adult human skin biopsies. Cells produced within the Institute would be used in a variety of Cedars-Sinai Medical research programs (initially focusing on understanding the causes of and finding treatments for diseases of the brain, heart, eye, liver, kidney, pancreas and skeletal structures, as well as cancer and metabolic disorders).

“This grant underscores the leading role Dr. Svendsen and his team is playing in the application of stem cell treatments that offer future hope to patients with degenerative diseases,” said Shlomo Melmed, M.D., Cedars-Sinai’s senior vice president of academic affairs and dean of the medical faculty.

Sally Stewart | prpacific.com
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>