Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer scientists discover new way breast cancer cells adapt to environmental stress

16.05.2011
An international research team led by Dr. Tak Mak, Director, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital (PMH), has discovered a new aspect of "metabolic transformation", the process whereby tumour cells adapt and survive under conditions that would kill normal cells.

The findings, published today in Genes and Development (http://www.genesdev.org/cgi/doi/10.1101/gad.1987211), show how breast cancer cells can thrive when deprived of their usual diet of glucose (sugar) and oxygen by turning to fatty acids for energy generation.

"Our results demonstrate that a protein not previously associated with breast cancer is involved in helping these cells to adapt to starvation conditions and to continue their uncontrolled growth," says Dr. Mak, principal investigator and Weekend to End Breast Cancer Chair in Breast Cancer Research at PMH. Dr. Mak is also a Professor at the University of Toronto in the Departments of Medical Biophysics and Immunology.

In the lab, researchers used an anticancer drug called rapamycin to block a molecular signalling pathway within breast cancer cells that stimulates sugar metabolism. However, instead of dying of starvation, the cells continued to multiply. The team also observed an increase in these cells of carnitine palmitoyltransferase 1C (CPT1C), a protein usually found only in the brains of healthy individuals. Moreover, cells engineered to produce high levels of CPT1C were also able to adapt their metabolism as a survival technique.

"In other words," says Dr. Mak, "The cancer cells acted like cheaters on a diet and found a new food source in fatty acids.

"The fact that CPT1C becomes expressed under conditions of metabolic stress highlights the resilience of cancer cells. They are able to adapt to environmental challenges and find alternative sources of food in order to flourish where healthy cells would not survive."

"Our discovery that deprivation of either sugar or oxygen spurs CPT1C expression in tumour cells marks this protein as a potential target for new drug development," says Dr. Mak.

"We also demonstrated that cells that were prevented from using CPT1C to cope with a disruption in sugar metabolism became more sensitive to environmental stress. These findings represent an important stepping stone to developing targeted therapies that can block cancer cells from adapting to environmental challenges and surviving efforts to kill them."

This most recent discovery builds on Dr. Mak's impressive body of work, which has led to important breakthroughs in immunology and our understanding of cancer at the molecular level. Dr. Mak is internationally renowned for his 1984 landmark scientific paper on the cloning of the genes for the T cell receptor, a key component of the human immune system.

The research published today was financially supported by grants from the Canadian Institutes of Health Research, The Princess Margaret Hospital Foundation, The Canadian Cancer Society, the Forschungskredit of the University of Zurich and Oncosuisse.

About The Campbell Family Institute for Breast Cancer Research

The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital brings together an elite team of cancer researchers, scientists, clinicians and staff dedicated to the ultimate goal of conquering breast cancer by leveraging basic, translational and clinical research into dramatic breast cancer breakthroughs. www.campbellfamilyinstitute.ca

About Princess Margaret Hospital, University Health Network

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. The Campbell Family Institute for Breast Cancer Research is the newest component of the Ontario Cancer Institute. It aims to become a world-leading program in breast cancer research by leveraging basic, translational, and clinical research into dramatic breast cancer breakthroughs. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are teaching hospitals affiliated with the University of Toronto. For more information, go to www.uhn.ca

Geoff Koehler | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>