Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer researchers discover new type of retinoblastoma in babies

13.03.2013
A team of Canadian and international cancer researchers led by Dr. Brenda Gallie at the Princess Margaret Cancer Centre, University Health Network (UHN), has discovered a new type of retinoblastoma, a rapidly developing eye cancer that affects very young babies– a finding that can immediately change clinical practice and optimize care for these children.

The finding, published online today in Lancet Oncology, is a breakthrough in recognizing that a single cancer gene (an oncogene) drives an aggressive retinoblastoma that starts long before birth in families with no history of the disease, says surgeon Dr. Gallie, an ophthalmologist who is also affiliated with The Hospital for Sick Children (SickKids) and a Professor in the Faculty of Medicine, University of Toronto.

"This research completely challenges conventional thinking and clinical practice," says Dr. Gallie. "The common type of retinoblastoma is initiated by damage to both copies of the RB1 tumor suppressor gene; the predisposition to this type of retinoblastoma can be inherited, so the other eye of the child and those of infant relatives are at risk to develop tumours. When we remove the eye with a large tumour in very young babies and show it is the new oncogene-driven type of retinoblastoma, there is believed to be zero risk for retinoblastoma developing in the other eye or in other infants in the family. This is a major advance in personalized cancer medicine for these children and families."

The oncogene-driven tumours are much larger than those anticipated in children with inherited retinoblastoma at the same age. "The earliest diagnosis comes when parents observe a white (instead of black) pupil of the eye, and the doctors listen to their observations and understand the urgency of referral. Sometimes Mom really does know best and clinicians should pay close attention."

Although less than 2% of unilateral retinoblastoma tumors are driven by the oncogene, the early age of onset predicts that about 1 in 5 babies diagnosed under six months of age actually has oncogene-driven retinoblastoma. "All the babies were completely cured by surgery," says Dr. Gallie.

"We've thought for a long time that all retinoblastoma were caused by loss of the retinoblastoma gene. Our study now reveals that's not the whole story: a new type of retinoblastoma, with normal retinoblastoma genes, is instead driven by extra copies of a powerful cancer gene, causing the cancer to grow very rapidly long before birth. The average age of diagnosis is four months."

This study, on which several clinical laboratories collaborated, demonstrates that molecular diagnostics can identify novel malignant diseases that elude traditional microscopic study of tissue. The researchers analysed more than 1,000 primary unilateral non-familial retinoblastoma tumours to validate oncogene-driven retinoblastoma. The Canadian research team included three UHN Research Institutes; Impact Genetics, Toronto; the B.C. Cancer Research Centre and University of British Columbia, Vancouver; the Cross Centre, Edmonton; The Hospital for Sick Children and the Ontario Institute for Cancer Research. The international collaborators were from the Netherlands, Germany, France and New Zealand.

The research was funded by the National Institutes of Health, the Canadian Institutes of Health Research, the Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, the Alcon Research Institute, and the Ontario Ministry of Health and Long-term Care. Dr. Gallie's research is also funded by The Campbell Family Cancer Research Institute through The Princess Margaret Cancer Foundation at UHN.

About the Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre and its research arm, Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, have achieved an international reputation as global leaders in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to http://www.theprincessmargaret.ca or http://www.uhn.ca .

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>