Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Breast Cancer Therapy Reduces Mastectomies; Saves Breast

19.01.2010
Heat treatment with chemotherapy kills large tumors; Approved by FDA; Next stage clinical trials start this year at OUHSC

A new treatment developed and tested by University of Oklahoma researchers not only killed large cancer tumors, but reduced the need for mastectomies by almost 90 percent. The latest results appear in an upcoming issue of the Annals of Surgical Oncology.

Building on this success, researchers at the OU Health Sciences Center, plan to start the next phase of clinical trials this year to test the therapy on even larger tumors.

“This therapy is a major advancement for women with later stage breast cancer. Right now, most patients with large tumors lose their breast. With this treatment along with chemotherapy, we were able to kill the cancer and save the breast tissue,” said William Dooley, M.D., a researcher at the OU Cancer Institute and the director of surgical oncology at OU Medicine.

Dr. Dooley is leading a group of researchers from OU, the Massachusetts Institute of Technology, the Los Angeles Biomedical Research Institute, the Comprehensive Breast Center in Florida and St. Joseph’s Hospital in California.

They are working on a treatment called Focused Microwave Thermotherapy. The technique, which was approved by the U.S. Food and Drug Administration, uses a modified version of the microwave technology behind the “Star Wars” defense system.

In the most recent study, researchers tested the therapy on tumors that were an inch to an inch and a half in size. These large tumors usually require mastectomies. When researchers used the heating therapy within two hours of patients receiving chemotherapy, the tumor was more susceptible to the chemotherapy and shrunk rapidly. The percentage of patients needing mastectomies was reduced from 75 percent to 7 percent.

“The trial was very successful. We were able to completely reverse those odds,” Dooley said. “We redesigned the machine and will begin clinical trials this year to determine whether the therapy works on tumors that are larger than one and a half inches and smaller than 5 inches in size.”

In theory, Dooley said the technique could be used on any organ that could be “held relatively still.” Scientists are now working to integrate heat-sensitive nanotechnology that would more precisely target cancer cells. They also plan to study a byproduct of the rapid disintegration of the tumor – a boosted immune system. Dooley said it looks like the rapid release of cancer proteins into the blood stream is causing an immune response that could reduce the chance of cancer recurrence.

Find the latest research results online at springerlink.com/content/g105331202416323/.

As Oklahoma’s only comprehensive academic cancer center, the OU Cancer Institute is raising the standard of cancer treatment in the state through research and education. The center is working toward an application to the National Cancer Institute to be designated as a “Comprehensive Cancer Center,” the gold standard of cancer research and care. Later this year, the OU Cancer Institute will move into a new 210,000-square-foot building. The facility will bring all outpatient cancer programs under one roof at the University of Oklahoma Health Sciences Center.

Diane Clay | EurekAlert!
Further information:
http://www.OUCancer.org
http://www.ouhsc.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>