Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Breast Cancer Therapy Reduces Mastectomies; Saves Breast

19.01.2010
Heat treatment with chemotherapy kills large tumors; Approved by FDA; Next stage clinical trials start this year at OUHSC

A new treatment developed and tested by University of Oklahoma researchers not only killed large cancer tumors, but reduced the need for mastectomies by almost 90 percent. The latest results appear in an upcoming issue of the Annals of Surgical Oncology.

Building on this success, researchers at the OU Health Sciences Center, plan to start the next phase of clinical trials this year to test the therapy on even larger tumors.

“This therapy is a major advancement for women with later stage breast cancer. Right now, most patients with large tumors lose their breast. With this treatment along with chemotherapy, we were able to kill the cancer and save the breast tissue,” said William Dooley, M.D., a researcher at the OU Cancer Institute and the director of surgical oncology at OU Medicine.

Dr. Dooley is leading a group of researchers from OU, the Massachusetts Institute of Technology, the Los Angeles Biomedical Research Institute, the Comprehensive Breast Center in Florida and St. Joseph’s Hospital in California.

They are working on a treatment called Focused Microwave Thermotherapy. The technique, which was approved by the U.S. Food and Drug Administration, uses a modified version of the microwave technology behind the “Star Wars” defense system.

In the most recent study, researchers tested the therapy on tumors that were an inch to an inch and a half in size. These large tumors usually require mastectomies. When researchers used the heating therapy within two hours of patients receiving chemotherapy, the tumor was more susceptible to the chemotherapy and shrunk rapidly. The percentage of patients needing mastectomies was reduced from 75 percent to 7 percent.

“The trial was very successful. We were able to completely reverse those odds,” Dooley said. “We redesigned the machine and will begin clinical trials this year to determine whether the therapy works on tumors that are larger than one and a half inches and smaller than 5 inches in size.”

In theory, Dooley said the technique could be used on any organ that could be “held relatively still.” Scientists are now working to integrate heat-sensitive nanotechnology that would more precisely target cancer cells. They also plan to study a byproduct of the rapid disintegration of the tumor – a boosted immune system. Dooley said it looks like the rapid release of cancer proteins into the blood stream is causing an immune response that could reduce the chance of cancer recurrence.

Find the latest research results online at springerlink.com/content/g105331202416323/.

As Oklahoma’s only comprehensive academic cancer center, the OU Cancer Institute is raising the standard of cancer treatment in the state through research and education. The center is working toward an application to the National Cancer Institute to be designated as a “Comprehensive Cancer Center,” the gold standard of cancer research and care. Later this year, the OU Cancer Institute will move into a new 210,000-square-foot building. The facility will bring all outpatient cancer programs under one roof at the University of Oklahoma Health Sciences Center.

Diane Clay | EurekAlert!
Further information:
http://www.OUCancer.org
http://www.ouhsc.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>