Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the code

22.11.2013
You may be sensitive to gluten, but you're not sure. Perhaps you can't put your finger on a recurring malaise, and your doctor is at a loss to figure it out.

A diagnostic method recently developed by UC Santa Barbara professor Patrick Daugherty can reveal — on a molecular level — the factors behind conditions thought to have environmental triggers.


By cross-referencing the amino acid sequence of peptides strongly associated with illnesses with a library of known peptides, researchers may be able to map antigens with identical sequences to their environment, thus uncovering and confirming environmental triggers for diseases such as Type 1 diabetes, schizophrenia, and autism.

Credit: Peter Allen

By decoding an individual's immune system, this elegant and accurate method can demystify, diagnose and provide further insight into conditions like celiac disease, multiple sclerosis, preeclampsia and schizophrenia.

"We have two goals," said Daugherty, a researcher with the Department of Chemical Engineering at UCSB and the campus's Center for BioEngineering. "We want to identify diagnostic tests for diseases where there are no blood diagnostics … and we want to figure out what might have given rise to these diseases."

The process works by mining an individual's immunological memory — a veritable catalog of the pathogens and antigens encountered by his or her immune system.

"Every time you encounter a pathogen, you mount an immune response," said Daugherty. The response comes in the form of antibodies that are specific to the antigens — molecular, microbial, chemical — your body is resisting, and the formation of "memory cells" that are activated by subsequent encounters with the antigen. Responses can vary, from minor reactions — a cough, or a sneeze — to serious autoimmune diseases in which the body turns against its own tissues and its immune system responds by destroying them, such as in the case of Type 1 diabetes and celiac disease.

"The trick is to determine which antibodies are linked to specific diseases," said Daugherty. Celiac disease sufferers, for example, will have certain antibodies in their blood that bind to specific peptides — short chains of amino acids — present in wheat, barley and rye. These peptides are the gluten that is the root of allergies and sensitivities in some people. Like a lock and key, these antibodies — the locks — bind only to certain sequences of amino acids that comprise the peptides — the keys.

"People with celiac disease have two particular antibody types in their blood, which have proved to be enormously useful for diagnosis," said Daugherty.

However, sheer variety and number of antibodies present in a person's blood at any given time has been a challenge for researchers trying to link specific illnesses with specific antibody molecules. One antigen can stimulate the production of many antibodies in response. What's more, each individual's antibodies to even the same antigen differ slightly in their form. The idea of using molecular separation to find the disease antibodies has been around for over 20 years, said Daugherty, but no one had figured quite how to sift through the vast amount of molecules.

To sort through perhaps tens of thousands of antibody molecules present in a person's blood, the research team, including postdoctoral researcher John T. Ballew from UCSB's Biomolecular Science and Engineering graduate program, mixes a sample of a subject's blood — which contains the antibody molecules — with a vast number of different peptides (about 10 billion).

"All the keys associate with their preferred lock," said Daugherty. "The peptides that can bind to an antibody, do so." The researchers then pull out the disease-bound pairs, in a process that progressively decreases the number of antibodies-peptide pairs that are most unique to a particular disease. Repeated with subsequent patients who may have the same symptoms, phenotypes or genetic dispositions, continues to whittle down the size of the peptide pool. Further in vitro evolution of the best draft peptides can identify the particular sequence of amino acid keys that fit into the antibody locks. This sequence can be used to confirm the antibodies in question as the biomarkers specifically associated with the disease.

"The diagnostic performance of the reagents generated with this approach is excellent," said Daugherty. "We can discover biomarkers with as little as a drop of blood, and the peptides discovered can be adapted into preferred low cost testing platforms widely used in clinical practice."

The amino acid sequence of the evolved peptides, when cross-referenced with a database of known proteins, can identify the antigens (that contain the same peptide sequence). This, in turn, can then yield clues into what factors in the patient's environment may have contributed to the disease. The process may be used to gain insight on diseases that are thought to have environmental triggers, including Type-1 diabetes, autism, schizophrenia/bipolar disorder, Crohn's disease, Parkinson's disease, and perhaps even Alzheimers disease. In cases, such as Graves' disease, where an antibody is identified as the cause (as opposed to simply an indicator) knowing the antibody's structure can lead to more effective therapies.

"If you can get rid of the antibody, you can treat the disease," said Daugherty. "By finding these keys, you can block the antibody."

Research on this study was performed also by partners from the Mayo Clinic; the University of Tampere in Finland; UC San Diego; and Seinäjoki Central Hospital in Finland. Their findings are published in a paper titled "Antibody biomarker discovery through in vitro directed evolution of consensus recognition epitopes," in the Nov. 11 online issue of the Proceedings of the National Academy of the Sciences.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>