Blood test for Alzheimer's gaining ground

In a study to be published in the August 28 issue of the journal Neurology, scientists have taken a step toward developing a blood test for Alzheimer's, finding a group of markers that hold up in statistical analyses in three independent groups of patients.

“Reliability and failure to replicate initial results have been the biggest challenge in this field,” says lead author William Hu, MD, PhD, assistant professor of neurology at Emory University School of Medicine. “We demonstrate here that it is possible to show consistent findings.”

Hu and his collaborators at the University of Pennsylvania and Washington University, St. Louis, measured the levels of 190 proteins in the blood of 600 study participants at those institutions. Study participants included healthy volunteers and those who had been diagnosed with Alzheimer's disease or mild cognitive impairment (MCI). MCI, often considered a harbinger for Alzheimer's disease, causes a slight but measurable decline in cognitive abilities.

A subset of the 190 protein levels (17) were significantly different in people with MCI or Alzheimer's. When those markers were checked against data from 566 people participating in the multicenter Alzheimer's Disease Neuroimaging Initiative, only four markers remained: apolipoprotein E, B-type natriuretic peptide, C-reactive protein and pancreatic polypeptide.

Changes in levels of these four proteins in blood also correlated with measurements from the same patients of the levels of proteins [beta-amyloid] in cerebrospinal fluid that previously have been connected with Alzheimer's. The analysis grouped together people with MCI, who are at high risk of developing Alzheimer's, and full Alzheimer's.

“We were looking for a sensitive signal,” says Hu. “MCI has been hypothesized to be an early phase of AD, and sensitive markers that capture the physiological changes in both MCI and AD would be most helpful clinically.”

“The specificity of this panel still needs to be determined, since only a small number of patients with non-AD dementias were included,” Hu says. “In addition, the differing proportions of patients with MCI in each group make it more difficult to identify MCI- or AD-specific changes.”

Neurologists currently diagnose Alzheimer's disease based mainly on clinical symptoms. Additional information can come from PET brain imaging, which tends to be expensive, or analysis of a spinal tap, which can be painful.

“Though a blood test to identify underlying Alzheimer's disease is not quite ready for prime time given today's technology, we now have identified ways to make sure that a test will be reliable,” says Hu. “In the meantime, the combination of a clinical exam and cerebrospinal fluid analysis remains the best tool for diagnosis in someone with mild memory or cognitive troubles.”

Hu's research began while he was a fellow at the University of Pennsylvania. Collaborators included David Holtzman, MD, from Washington University at St Louis, Leslie Shaw, PhD and John Trojanowski, MD, PhD from the University of Pennsylvania, and Holly Soares, PhD from Bristol Myers Squibb.

The Alzheimer's Disease Neuroimaging Initiative is administered by UCLA, and is supported by the National Institutes of Health and several pharmaceutical companies. Hu's research is supported by the Viretta Brady Discovery Fund.

Reference: W.T. Hu et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79, 897-905 (2012).

Media Contact

Kerry Ludlam EurekAlert!

More Information:

http://www.emory.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors