Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test for Alzheimer's

05.05.2011
MUHC study identifies procedure that detects early stages

A new blood test that will diagnose Alzheimer's disease may soon hit the market, thanks to an innovative study from the Research Institute of the McGill University Health Centre (MUHC).

Their findings have characterized a unique biochemical diagnosis, which identifies patients with this devastating disorder. This research, published in the month's issue of the Journal of Alzheimer's Disease, has implications for the half-a-million Canadian sufferers and many millions more worldwide.

"Until now, there has been no definitive diagnostic tool for Alzheimer's, other than postmortem analysis of brain tissue," says senior author Dr. Vassilios Papadopoulos, director of the MUHC Research Institute. "Our clinical study shows that a non-invasive blood test, based on a biochemical process, may be successfully used to diagnose Alzheimer's at an early stage and differentiate it from other types of dementia."

The biochemistry behind the test

Papadopoulos and colleagues based the Alzheimer's blood test on the production of a brain hormone called dehydroepiandrosterone (DHEA). This hormone is present at high levels in the brain where it has a wide range of biological effects.

The researchers were able to promote the production of DHEA, using a chemical process called oxidation, in blood taken from non-Alzheimer's patients. However, oxidation of blood from Alzheimer's patients did not result in an increase of DHEA.

"There is a clear correlation between the lack of ability to produce DHEA through oxidation in the blood and the degree of cognitive impairment found in Alzheimer's disease," says Papadopoulos. "We demonstrated we could accurately and repetitively detect Alzheimer's disease, with small samples of blood. This test also allowed for differential diagnosis of early stages of Alzheimer's disease, suggesting this can be used as a test to diagnose the disease in its infancy."

Treatment implications

"There are many candidate disease-modifying therapies that target the underlying development of Alzheimer's disease, which are in clinical trials," adds Papadopoulos. "However, the implementation of any therapy is dependant on the reliability of the diagnosis."

Currently the diagnosis of Alzheimer's follows the sequence of family history, information, mental assessment and the physical exam, focusing on neurological signs.

"An accurate, easy and specific non-invasive biochemical test that correlates with clinical findings is vital. We believe our results demonstrate that the DHEA-oxidation blood test can be used to diagnose Alzheimer's at a very early stage and monitor the effect of therapies and the evolution of the disease."

About this study: The study, A lead study on oxidative stress-mediated dehydroepiandrosterone formation in serum: The biochemical basis for a diagnosis of Alzheimer's disease, was authored by Georges Rammouz, Laurent Lecanu and Vassilios Papadopoulos from the MUHC Research Institute and McGill University; Paul Aisen from the University of California at San Diego.

Partners in research: This work was supported by funds from the National Institutes of Health and Samaritan Pharmaceuticals.

Related links:

Cited study: http://www.j-alz.com
Research Institute of the MUHC: http://muhc.ca/research/dashboard
McGill University: http://www.mcgill.ca/
Media contact:
Julie Robert
Communications Coordinator
Public Affairs and Strategic Planning, MUHC
Phone: 514 934-1934 ext. 71381
E-mail: julie.robert@muhc.mcgill.ca

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>