Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test for Alzheimer's

05.05.2011
MUHC study identifies procedure that detects early stages

A new blood test that will diagnose Alzheimer's disease may soon hit the market, thanks to an innovative study from the Research Institute of the McGill University Health Centre (MUHC).

Their findings have characterized a unique biochemical diagnosis, which identifies patients with this devastating disorder. This research, published in the month's issue of the Journal of Alzheimer's Disease, has implications for the half-a-million Canadian sufferers and many millions more worldwide.

"Until now, there has been no definitive diagnostic tool for Alzheimer's, other than postmortem analysis of brain tissue," says senior author Dr. Vassilios Papadopoulos, director of the MUHC Research Institute. "Our clinical study shows that a non-invasive blood test, based on a biochemical process, may be successfully used to diagnose Alzheimer's at an early stage and differentiate it from other types of dementia."

The biochemistry behind the test

Papadopoulos and colleagues based the Alzheimer's blood test on the production of a brain hormone called dehydroepiandrosterone (DHEA). This hormone is present at high levels in the brain where it has a wide range of biological effects.

The researchers were able to promote the production of DHEA, using a chemical process called oxidation, in blood taken from non-Alzheimer's patients. However, oxidation of blood from Alzheimer's patients did not result in an increase of DHEA.

"There is a clear correlation between the lack of ability to produce DHEA through oxidation in the blood and the degree of cognitive impairment found in Alzheimer's disease," says Papadopoulos. "We demonstrated we could accurately and repetitively detect Alzheimer's disease, with small samples of blood. This test also allowed for differential diagnosis of early stages of Alzheimer's disease, suggesting this can be used as a test to diagnose the disease in its infancy."

Treatment implications

"There are many candidate disease-modifying therapies that target the underlying development of Alzheimer's disease, which are in clinical trials," adds Papadopoulos. "However, the implementation of any therapy is dependant on the reliability of the diagnosis."

Currently the diagnosis of Alzheimer's follows the sequence of family history, information, mental assessment and the physical exam, focusing on neurological signs.

"An accurate, easy and specific non-invasive biochemical test that correlates with clinical findings is vital. We believe our results demonstrate that the DHEA-oxidation blood test can be used to diagnose Alzheimer's at a very early stage and monitor the effect of therapies and the evolution of the disease."

About this study: The study, A lead study on oxidative stress-mediated dehydroepiandrosterone formation in serum: The biochemical basis for a diagnosis of Alzheimer's disease, was authored by Georges Rammouz, Laurent Lecanu and Vassilios Papadopoulos from the MUHC Research Institute and McGill University; Paul Aisen from the University of California at San Diego.

Partners in research: This work was supported by funds from the National Institutes of Health and Samaritan Pharmaceuticals.

Related links:

Cited study: http://www.j-alz.com
Research Institute of the MUHC: http://muhc.ca/research/dashboard
McGill University: http://www.mcgill.ca/
Media contact:
Julie Robert
Communications Coordinator
Public Affairs and Strategic Planning, MUHC
Phone: 514 934-1934 ext. 71381
E-mail: julie.robert@muhc.mcgill.ca

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>