Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleeding gums linked to heart disease

11.09.2008
Bad teeth, bleeding gums and poor dental hygiene can end up causing heart disease, scientists heard today (Thursday 11 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

People with poor dental hygiene and those who don't brush their teeth regularly end up with bleeding gums, which provide an entry to the bloodstream for up to 700 different types of bacteria found in our mouths. This increases the risk of having a heart attack, according to microbiologists from the University of Bristol and the Royal College of Surgeons in Ireland.

"The mouth is probably the dirtiest place in the human body," said Dr Steve Kerrigan from the Royal College of Surgeons in Dublin, Ireland. "If you have an open blood vessel from bleeding gums, bacteria will gain entry to your bloodstream. When bacteria get into the bloodstream they encounter tiny fragments called platelets that clot blood when you get a cut. By sticking to the platelets bacteria cause them to clot inside the blood vessel, partially blocking it. This prevents the blood flow back to the heart and we run the risk of suffering a heart attack."

The only treatment for this type of disease is aggressive antibiotic therapy, but with the increasing problem of multiple drug resistant bacteria, this option is becoming short lived.

"Cardiovascular disease is currently the biggest killer in the western world. Oral bacteria such as Streptococcus gordonii and Streptococcus sanguinis are common infecting agents, and we now recognise that bacterial infections are an independent risk factor for heart diseases," said Professor Howard Jenkinson from the University of Bristol. "In other words it doesn't matter how fit, slim or healthy you are, you're adding to your chances of getting heart disease by having bad teeth."

Researchers at Bristol have been investigating the ways in which the bacteria interact with platelets in order to develop new and improved therapies.

"Most of the studies that have looked at how bacteria interact with platelets were carried out under conditions that do not resemble those in the human circulatory system. We mimicked the pressure inside the blood vessels and in the heart", said Professor Jenkinson. "Using this technique we demonstrated that bacteria use different mechanisms to cause platelets to clump together, allowing them to completely encase the bacteria. This shields the bacteria from the cells of our immune systems, which would normally kill bacteria, and most importantly also protects them from antibiotics."

These findings suggest why antibiotics do not always work in the treatment of infectious heart disease and also highlight the need to develop new drugs to treat this disease. "We are currently in the process of identifying the exact site at which the bacteria stick to the platelets," said Professor Jenkinson. "Once this is identified we will design a new drug to prevent this interaction."

"We also identified several proteins on the bacteria that lead to platelet clumping," said Dr Kerrigan. "Genetic deletion of these proteins from the bacteria prevented the platelets from clumping which shows that these proteins play an essential role and may be candidate proteins for new drug development or producing vaccines."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>