Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ‘bionic’ leg gives amputees a natural gait

18.08.2011
A new lower-limb prosthetic developed at Vanderbilt University allows amputees to walk without the leg-dragging gait characteristic of conventional artificial legs.

The device uses the latest advances in computer, sensor, electric motor and battery technology to give it bionic capabilities: It is the first prosthetic with powered knee and ankle joints that operate in unison.

It comes equipped with sensors that monitor its user’s motion. It has microprocessors programmed to use this data to predict what the person is trying to do and operate the device in ways that facilitate these movements.

“When its working, it’s totally different from my current prosthetic,” said Craig Hutto, the 23-year-old amputee who has been testing the leg for several years. “A passive leg is always a step behind me. The Vanderbilt leg is only a split-second behind.”

The bionic leg is the result of a seven-year research effort at the Vanderbilt Center for Intelligent Mechatronics, directed by Michael Goldfarb, the H. Fort Flowers Professor of Mechanical Engineering. The project was initially funded by a seed grant from the National Science Foundation, followed by a development grant from the National Institutes ofHealth. Key aspects of the design have been patented by the university, which has granted exclusive rights to develop the prosthesis to Freedom Innovations, a leading developer and manufacturer of lower limb prosthetic devices.

“With out latest model, we have validated our hypothesis that the right technology was available to make a lower-limb prosthetic with powered knee and ankle joints,” said Goldfarb. “Our device illustrates the progress we are making at integrating man and machine.”

The Vanderbilt prosthesis is designed for daily life. It makes it substantially easier for an amputee to walk, sit, stand, and go up and down stairs and ramps. Studies have shown that users equipped with the device naturally walk 25 percent faster on level surfaces than when they use passive lower-limb prosthetics. That is because it takes users 30 to 40 percent less of their own energy to operate.

“Going up and down slopes is one of the hardest things to do with a conventional leg,” said Hutto. “So I have to be conscious of where I go because I can get very tired walking up an down slopes. But that won’t be a problem with the powered leg because it goes up and down slopes almost like a natural leg.”

Recent technological advances have allowed the Vanderbilt engineers to produce a device that weighs about nine pounds – less than most human lower legs – and can operate for three days of normal activity, or 13 to 14 kilometers of continuous walking, on a single charge. They have also dramatically reduced the amount of noise that the latest model makes, although it is slightly louder than they would like.

One of the latest capabilities that the engineers have added is an anti-stumble routine. If the leg senses that its user is starting to stumble, it will lift up the leg to clear any obstruction and plant the foot on the floor.

In order to incorporate all the improvements, the prosthetic’s hardware design has gone through seven versions and its electronics board has been redone 15 times.

According to Goldfarb, it was tough to make the prosthetic light and quiet enough. In particular, it was difficult to fit the powerful motors and drive train that they needed into the volume available. The biggest technical challenge, however, was to develop the control system.

“As you add greater capability, you are also adding greater liability,” he said. “Not only does the controller have to perform individual operations reliability, but it has to perform several operations at the same time and not get confused.”

The Center for Intelligent Mechatronics is also developing an anthropomorphic prosthetic arm project and an advanced exoskeleton to aid in physical therapy.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>