Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic map reveals clues to how cholesterol is made

13.10.2014

In spite of its dangerous reputation, cholesterol is in fact an essential component of human cells.

Manufactured by the cells themselves, it serves to stiffen the cell's membrane, helping to shape the cell and protect it. By mapping the structure of a key enzyme involved in cholesterol production, Rockefeller University researchers and a colleague in Italy have gained new insight into this complex molecular process.


An enzyme responsible for a crucial step in the production of cholesterol has ten segments that span the cell membrane in which it is embedded. These contain two pockets the enzyme uses to bring the reactants together.

Credit: Laboratory of Cell Biology at The Rockefeller University/Nature

"This is the first report to pinpoint the location of every atom — in this case nearly 3,000 of them — in one of the membrane-embedded enzymes cells use to make cholesterol. With the structure of this enzyme, we can better understand how the body synthesizes it," says Günter Blobel, John D. Rockefeller Jr., Professor and head of the Laboratory of Cell Biology. "This accomplishment offers new insight on genetic disorders as well as the possibility of new approaches to lowering blood cholesterol when it becomes dangerously high." The findings were published today (October 12) in Nature.

Cells aren't the only source of cholesterol; cheeseburgers, lobsters, whipped cream and other rich foods can raise levels. Eat a lot of them, and the body compensates by making less of its own cholesterol and by becoming less receptive to cholesterol in the blood. (It's when traveling in the blood that cholesterol can become a hazard, leading to the formation of potentially blood-vessel blocking plaques.)

Healthy cholesterol requires balance: Too much can cause problems, but a certain amount is necessary. Not only do cholesterol molecules make cells' membranes more resistant to wear and tear, the health of the human body as a whole depends on it. This waxy substance serves as a precursor to some hormones, such as testosterone, as well as vitamin D and bile.

The cholesterol-making process in cells requires about 30 chemical reactions and 20 enzymes, seven of which are embedded in the cellular membrane. The mapping project focused on one of these, known as a sterol reductase, which helps two electrons travel from a molecule known as NADPH to another molecule that will eventually become cholesterol. This type of reaction is known as a reduction.

"Our images revealed two pockets within the enzyme's architecture. One contains the NADPH, and the other provides access to the cholesterol precursor. When in place, these molecules are close enough to spark this important step in the synthesis of cholesterol," says first author Xiaochun Li, a postdoc.

Li's interest began with a molecule known as the lamin B receptor (LBR), a sterol reductase in human cells. "Although LBR was discovered 26 years ago, and we know it contributes to cholesterol synthesis, no one knew what it looked like, or how it works," Li says.

Biologists interested in the structure of molecules crystallize them, and then bounce X-rays off the crystals. Based on the pattern produced by the X-rays, the scientists then infer the structure of the molecule. But LBR did not crystallize well, so Li had to find a more accommodating molecule. He found a good candidate in the maSR1 protein from a methane-eating bacterium, then tests at the University of Perugia in Italy revealed that maSR1 could perform the same reducing work as LBR, the human protein.

The X-ray diffraction of maSR1 crystals revealed a protein with 10 segments spanning the membrane. One half of the molecule contains two pockets that bring the reactants together. The researchers think the other half interacts with other enzymes involved in making cholesterol synthesis, as part of a relay system for ferrying the evolving molecule along.

Mutations in sterol reductase genes, including those for LBR, are associated with several disorders, including Pelger-Huet Anomaly, which causes defects in certain white blood cells, and Smith-Lemli-Opitz syndrome, associated with behavioral, physical and mental disabilities. To get a better idea of how these mutations alter the enzymes, Li and colleagues pinpointed the locations of the defects they caused in models of the molecule.

The research also has implications for the treatment of high cholesterol, Blobel says. "Many of the pills currently available interfere with early steps in the complex series of reactions that generates cholesterol. Our reaction occurs later, and may offer a new target worth investigating."

Wynne Parry | Eurek Alert!

Further reports about: Atomic NADPH X-rays cholesterol clues crystallize crystals defects disorders enzymes reactions structure synthesis

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>