Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic map reveals clues to how cholesterol is made

13.10.2014

In spite of its dangerous reputation, cholesterol is in fact an essential component of human cells.

Manufactured by the cells themselves, it serves to stiffen the cell's membrane, helping to shape the cell and protect it. By mapping the structure of a key enzyme involved in cholesterol production, Rockefeller University researchers and a colleague in Italy have gained new insight into this complex molecular process.


An enzyme responsible for a crucial step in the production of cholesterol has ten segments that span the cell membrane in which it is embedded. These contain two pockets the enzyme uses to bring the reactants together.

Credit: Laboratory of Cell Biology at The Rockefeller University/Nature

"This is the first report to pinpoint the location of every atom — in this case nearly 3,000 of them — in one of the membrane-embedded enzymes cells use to make cholesterol. With the structure of this enzyme, we can better understand how the body synthesizes it," says Günter Blobel, John D. Rockefeller Jr., Professor and head of the Laboratory of Cell Biology. "This accomplishment offers new insight on genetic disorders as well as the possibility of new approaches to lowering blood cholesterol when it becomes dangerously high." The findings were published today (October 12) in Nature.

Cells aren't the only source of cholesterol; cheeseburgers, lobsters, whipped cream and other rich foods can raise levels. Eat a lot of them, and the body compensates by making less of its own cholesterol and by becoming less receptive to cholesterol in the blood. (It's when traveling in the blood that cholesterol can become a hazard, leading to the formation of potentially blood-vessel blocking plaques.)

Healthy cholesterol requires balance: Too much can cause problems, but a certain amount is necessary. Not only do cholesterol molecules make cells' membranes more resistant to wear and tear, the health of the human body as a whole depends on it. This waxy substance serves as a precursor to some hormones, such as testosterone, as well as vitamin D and bile.

The cholesterol-making process in cells requires about 30 chemical reactions and 20 enzymes, seven of which are embedded in the cellular membrane. The mapping project focused on one of these, known as a sterol reductase, which helps two electrons travel from a molecule known as NADPH to another molecule that will eventually become cholesterol. This type of reaction is known as a reduction.

"Our images revealed two pockets within the enzyme's architecture. One contains the NADPH, and the other provides access to the cholesterol precursor. When in place, these molecules are close enough to spark this important step in the synthesis of cholesterol," says first author Xiaochun Li, a postdoc.

Li's interest began with a molecule known as the lamin B receptor (LBR), a sterol reductase in human cells. "Although LBR was discovered 26 years ago, and we know it contributes to cholesterol synthesis, no one knew what it looked like, or how it works," Li says.

Biologists interested in the structure of molecules crystallize them, and then bounce X-rays off the crystals. Based on the pattern produced by the X-rays, the scientists then infer the structure of the molecule. But LBR did not crystallize well, so Li had to find a more accommodating molecule. He found a good candidate in the maSR1 protein from a methane-eating bacterium, then tests at the University of Perugia in Italy revealed that maSR1 could perform the same reducing work as LBR, the human protein.

The X-ray diffraction of maSR1 crystals revealed a protein with 10 segments spanning the membrane. One half of the molecule contains two pockets that bring the reactants together. The researchers think the other half interacts with other enzymes involved in making cholesterol synthesis, as part of a relay system for ferrying the evolving molecule along.

Mutations in sterol reductase genes, including those for LBR, are associated with several disorders, including Pelger-Huet Anomaly, which causes defects in certain white blood cells, and Smith-Lemli-Opitz syndrome, associated with behavioral, physical and mental disabilities. To get a better idea of how these mutations alter the enzymes, Li and colleagues pinpointed the locations of the defects they caused in models of the molecule.

The research also has implications for the treatment of high cholesterol, Blobel says. "Many of the pills currently available interfere with early steps in the complex series of reactions that generates cholesterol. Our reaction occurs later, and may offer a new target worth investigating."

Wynne Parry | Eurek Alert!

Further reports about: Atomic NADPH X-rays cholesterol clues crystallize crystals defects disorders enzymes reactions structure synthesis

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>