Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antiviral compound may protect brain from pathogens, West Nile virus study shows

18.05.2015

Researchers have found that an antiviral compound may protect the brain from invading pathogens.

Studying West Nile virus infection in mice, scientists at Washington University School of Medicine in St. Louis showed that interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain.


Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, scientists at Washington University School of Medicine in St. Louis have shown that an antiviral compound tightens the blood-brain barrier, making it harder for the virus to invade the brain.

Credit: Centers for Disease Control and Prevention

The blood-brain barrier is a natural defense system that is supposed to keep pathogens out of the brain. Sometimes, however, bacteria or viruses circulating in the blood slip past the blood-brain barrier, turning routine illnesses into serious infections.

Interferon-lambda is produced naturally in the body in response to infection, but the new research suggests that larger amounts of the antiviral compound may tighten the blood-brain barrier against pathogens or possibly even faulty immune cells that can attack the brain and cause conditions such as multiple sclerosis.

By blocking interferon-lambda's receptors in the brain, it may be possible one day to open the barrier to chemotherapies to treat specific diseases in the brain, such as tumors. Such tumors now are not optimally treated with chemotherapy drugs because the drugs can't cross the blood-brain barrier.

The findings are available online in Science Translational Medicine. Follow the School of Medicine on Facebook, Twitter and Google+.

"We have identified a new antiviral function of interferon-lambda that doesn't involve directly attacking a virus but stems viral invasion into the brain," said co-senior author Robyn Klein, MD, PhD, professor of medicine. "This suggests the possibility of multiple new applications. We're testing one of these right now, conducting studies in mice to see if interferon-lambda can help prevent brain inflammation in a mouse model of multiple sclerosis."

Other forms of interferon have shown potential for influencing the blood-brain barrier, but interferon-lambda may have significantly fewer side effects.

Infections with West Nile virus occur globally. No treatments exist for the virus, which crosses the blood-brain barrier in an estimated 1 percent of infected people, causing a debilitating neurological condition that can be fatal.

Klein and co-senior author Michael Diamond, MD, PhD, professor of medicine, looked closely at West Nile virus infections in mice to learn more about how viruses cross the blood-brain barrier. This barrier typically keeps large molecules, such as immune cells, drugs and pathogens, out of the brain while letting in essential nutrients such as glucose.

In earlier research, Klein showed that West Nile virus can open the blood-brain barrier to enter the central nervous system, but that the barrier usually quickly closes, preventing immune molecules from following to attack the virus.

In the new study, the scientists studied mice that lacked the interferon-lambda receptor. Compared with normal mice, the mice without the receptor had higher levels of West Nile virus in the brain. The researchers found the blood-brain barrier was much more permeable to the virus in these mice, suggesting that loss of the receptor through which interferon-lambda acts had loosened the barrier.

The scientists then gave normal mice West Nile virus along with interferon-lambda. The mice received the antiviral compound at the start of the infection and two and four days later. Typically less than 20 percent of normal mice survive such a high dose of the virus, but survival rates rose to more than 40 percent after treatment with interferon-lambda.

"Viruses are most dangerous when they enter the brain," said Diamond. "Compared with untreated mice, we found significantly lower concentrations of the virus in the brain among mice treated with interferon-lambda."

If further studies of interferon-lambda prove fruitful in stemming the spread of viruses to the brain, a major hurdle remains. By the time symptoms of viral infections are serious, the virus is already in the brain. This reality suggests earlier diagnosis is critical.

But, the researchers note, interferon-lambda may be a better way to influence what gets into the brain than other forms of interferon, which are associated with significant side effects such as fever, chills and fatigue.

"Interferon-lambda has significantly fewer receptors in the body, which may mean using it as a treatment is likely to have fewer side effects," Diamond said. "It's also possible that interferon-lambda may influence other protective barriers in the body, such as those in the skin and the gut, an area of research my laboratory is investigating."

###

This work was supported by the National Institutes of Health (NIH), grant numbers U19 AI083019, PCTAS AI083019-0251, T32-AI007172, RO1 AI074973, RO1 NS052632 and F31-NS07866-01, and the National Science Foundation, grant number DGE-1143954. Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale Jr. M, Klein RS, Diamond MS. Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science Translational Medicine, online April 22, 2015.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Media Contact

Judy Martin Finch
martinju@wustl.edu
314-286-0105

 @WUSTLmed

http://www.medicine.wustl.edu 

Judy Martin Finch | EurekAlert!

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>