Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addition of immunotherapy boosts pediatric cancer survival in children with neuroblastoma

30.09.2010
Administering a new form of immunotherapy to children with neuroblastoma, a nervous system cancer, increased the percentage of those who were alive and free of disease progression after two years, according to researchers at the University of California, San Diego School of Medicine and fellow institutions.

The percentage rose from 46 percent for children receiving a standard therapy to 66 percent for children receiving immunotherapy plus standard therapy, according to the study published in the Sept. 30, 2010 issue of the New England Journal of Medicine.

"This is the first clinical trial to document that a combination of anti-cancer monoclonal antibody (mAb) with cytokines is an effective anti-cancer therapy," said Alice L. Yu, MD, PhD, study chair and Professor of Pediatric Hematology Oncology at Moores UCSD Cancer Center. "This is also the first time a mAb targeting a glycolipid is shown to be effective for cancer immunotherapy since all therapeutic anti-cancer mAbs previously approved by FDA are directed against protein antigen. Overall, these findings present a clear paradigm shift and establish immunotherapy as a cornerstone to high-risk neuroblastoma treatment. This immunotherapy regimen will now be standard of care for children in first remission."

Neuroblastoma is a cancer of the peripheral nervous system (found outside of the brain and spinal cord), and is responsible for 12 percent of all deaths due to cancer in children under 15 years of age. It is the most common non-brain solid tumor in children. Nearly 50 percent of patients with neuroblastoma have a high-risk form of the disease and have poor long-term survival despite very intensive treatment.

The previously established standard treatment for neuroblastoma uses high doses of chemotherapy to destroy as many cancer cells as possible. But this form of chemotherapy (myleoablative therapy) also destroys some normal blood-forming cells, so it is followed by giving back previously collected blood-forming cells to restore immune system function and blood cell formation. Patients who respond to this therapy are then given a derivative of vitamin A to further treat any remaining cancer cells. More than half of the patients with high-risk neuroblastoma treated in this manner succumb to the disease.

A newer approach to cancer treatment is immunotherapy, which in this instance uses an antibody called ch14.18 to target a substance on the surface of tumor cells called GD2. The GD2 is expressed by cancers such as neuroblastoma but is also present on some normal nerve cells. Early-phase studies demonstrated the safety and activity of ch14.18 when it was given with other drugs that boost the immune system. Those drugs include a factor which stimulates white blood cell growth and a hormone that increases the number and activity of certain types of immune cells.

In this study, 226 children with high-risk neuroblastoma who had responded to myeloablative therapy were randomly assigned to receive standard therapy (isotretinoin), or isotretinoin, ch14.18, and the immune system boosting drugs. The median time these patients were followed in the study was approximately two years. Although the original plan had been to compare outcomes after three years, the study stopped early because of the strongly positive results, allowing those on standard therapy to switch to ch14.18 immunotherapy if they wished.

Toxicities, including pain, low blood pressure, capillary leak and hypersensitivity reactions, were encountered with the immunotherapy treatment at a significantly greater rate than compared to those who just received the standard therapy. However, side effects in the immunotherapy group were temporary and primarily resolved when treatment was stopped.

The randomized phase III clinical trial was coordinated by the Children's Oncology Group (COG), a national consortium of researchers supported by the National Cancer Institute (NCI), part of the NIH.

Because there was no pharmaceutical company to make ch14.18 when the phase III trial started, NCI manufactured the agent and provided it to COG for the clinical trial. NCI continues to manufacture ch14.18 and to make it available to children with high-risk neuroblastoma through ongoing Children's Oncology Group clinical trials. NCI has identified a pharmaceutical partner, United Therapeutics Corp., Silver Spring, Md., that will eventually take over responsibility for manufacturing ch14.18 and which will be responsible for obtaining U.S. Food and Drug Administration approval of ch14.18 for the treatment of high-risk neuroblastoma.

Fellow researchers included Andrew L. Gilman, M.D., M. Fevzi Ozkaynak, M.D., Wendy B. London, Ph.D., Susan G. Kreissman, M.D., Helen X. Chen, M.D., Malcolm Smith, M.D., Ph.D., Barry Anderson, M.D., Judith G. Villablanca, M.D., Katherine K. Matthay, M.D., Hiro Shimada, M.D., Stephan A. Grupp, M.D., Ph.D., Robert Seeger, M.D., C. Patrick Reynolds, M.D., Ph.D., Allen Buxton, M.S., Ralph A. Reisfeld, Ph.D., Steven D. Gillies, Ph.D., Susan L. Cohn, M.D., John M. Maris, M.D., and Paul M. Sondel, M.D., Ph.D., for the Children's Oncology Group.

Jackie Carr | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: COG Cancer GD2 NCI Oncology blood cell cancer cells immune cell immune system nerve cell

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>