Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More accurate diagnosis for leading cancer killer in children may be possible

13.01.2010
Missing, mutated genes occur simultaneously in unique set of pediatric brain tumors

Brain cancer is the leading cause of cancer death in children. Now a more accurate diagnosis of childhood brain cancers may soon be possible, according to researchers at Huntsman Cancer Institute (HCI) at the University of Utah. The information is published online today in the journal Cancer Research.

"Researchers already know cancerous tumors often lack certain copies of genes. They also know certain cancer-promoting genes are mutated in cancer patients," says Joshua Schiffman, M.D., an HCI investigator. "But what's significant about this new research is that we've shown these two events occur simultaneously in a unique set of pediatric brain tumors ¯ a finding previously unknown in these pediatric patients."

Schiffman, along with researchers from several other institutions including Stanford, Washington University, and UCSF, studied the tumors of pediatric brain cancer patients. Brain tumors are typically classified into grades 1-4 at the time of diagnosis based on their appearance under the microscope. Schiffman and colleagues studied samples from each brain tumor grade using new technology to detect either missing copies or extra copies of DNA. They also looked for mutations, or changes, in the DNA from the same brain tumor samples that can cause improper functioning of genes resulting in cancer. Researchers discovered genetic differences in the different tumor grades that may help explain tumor development and could lead to more accurate diagnosis and categorization of patients. While more research is needed, Schiffman believes these findings can eventually lead to more targeted and individualized treatments.

The research focuses on BRAF, a gene known to be commonly affected in low-grade brain tumors called astrocytomas. Researchers studied more than 40 of these pediatric astrocytomas ¯ the most common form of brain cancer in children ¯ and found that five out of seven grade 2-4 astrocytomas with BRAF mutations occurred in combination with a deletion in CDKN2A, another gene associated with cancer. The findings suggest these combined alterations define a subset of pediatric malignant astrocytomas.

According to the Pediatric Brain Tumor Foundation, every day, nine children in the U.S. are diagnosed with a brain tumor. Brain tumors are the leading cause of cancer death from childhood cancer, accounting for 24 percent of cancer-related deaths. Pediatric brain tumors are different from those in adults and are often treated differently.

"A lot of progress has been made in our understanding of adult brain cancers, but we don't know as much about the genetics of pediatric brain cancers, which are the number one cancer killer of children," says Schiffman. "This information sheds new light in an area where little information was known. The ability to recognize unique subsets of tumors based on their genetic make-up could someday lead the way to more individualized treatments for pediatric brain cancers."

Schiffman is an assistant professor in the Division of Pediatric Hematology/Oncology, Department of Oncological Sciences at the University of Utah. He is also affiliated with Primary Children's Medical Center in Salt Lake City.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN) a not-for-profit alliance of the world's leading cancer centers, which is dedicated to improving the quality and effectiveness of care provided to patients with cancer.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu
http://www.huntsmancancer.org

Further reports about: Brain Cancer DNA HCI Schiffman Utah brain cancer brain tumor cancer patients

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>