Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More accurate diagnosis for leading cancer killer in children may be possible

13.01.2010
Missing, mutated genes occur simultaneously in unique set of pediatric brain tumors

Brain cancer is the leading cause of cancer death in children. Now a more accurate diagnosis of childhood brain cancers may soon be possible, according to researchers at Huntsman Cancer Institute (HCI) at the University of Utah. The information is published online today in the journal Cancer Research.

"Researchers already know cancerous tumors often lack certain copies of genes. They also know certain cancer-promoting genes are mutated in cancer patients," says Joshua Schiffman, M.D., an HCI investigator. "But what's significant about this new research is that we've shown these two events occur simultaneously in a unique set of pediatric brain tumors ¯ a finding previously unknown in these pediatric patients."

Schiffman, along with researchers from several other institutions including Stanford, Washington University, and UCSF, studied the tumors of pediatric brain cancer patients. Brain tumors are typically classified into grades 1-4 at the time of diagnosis based on their appearance under the microscope. Schiffman and colleagues studied samples from each brain tumor grade using new technology to detect either missing copies or extra copies of DNA. They also looked for mutations, or changes, in the DNA from the same brain tumor samples that can cause improper functioning of genes resulting in cancer. Researchers discovered genetic differences in the different tumor grades that may help explain tumor development and could lead to more accurate diagnosis and categorization of patients. While more research is needed, Schiffman believes these findings can eventually lead to more targeted and individualized treatments.

The research focuses on BRAF, a gene known to be commonly affected in low-grade brain tumors called astrocytomas. Researchers studied more than 40 of these pediatric astrocytomas ¯ the most common form of brain cancer in children ¯ and found that five out of seven grade 2-4 astrocytomas with BRAF mutations occurred in combination with a deletion in CDKN2A, another gene associated with cancer. The findings suggest these combined alterations define a subset of pediatric malignant astrocytomas.

According to the Pediatric Brain Tumor Foundation, every day, nine children in the U.S. are diagnosed with a brain tumor. Brain tumors are the leading cause of cancer death from childhood cancer, accounting for 24 percent of cancer-related deaths. Pediatric brain tumors are different from those in adults and are often treated differently.

"A lot of progress has been made in our understanding of adult brain cancers, but we don't know as much about the genetics of pediatric brain cancers, which are the number one cancer killer of children," says Schiffman. "This information sheds new light in an area where little information was known. The ability to recognize unique subsets of tumors based on their genetic make-up could someday lead the way to more individualized treatments for pediatric brain cancers."

Schiffman is an assistant professor in the Division of Pediatric Hematology/Oncology, Department of Oncological Sciences at the University of Utah. He is also affiliated with Primary Children's Medical Center in Salt Lake City.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN) a not-for-profit alliance of the world's leading cancer centers, which is dedicated to improving the quality and effectiveness of care provided to patients with cancer.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu
http://www.huntsmancancer.org

Further reports about: Brain Cancer DNA HCI Schiffman Utah brain cancer brain tumor cancer patients

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>